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ABSTRACT

Motivation: All residues in a protein are not equally important. Some

are essential for the proper structure and function of the protein,

whereas others can be readily replaced. Conservation analysis is

one of the most widely used methods for predicting these

functionally important residues in protein sequences.

Results: We introduce an information-theoretic approach for

estimating sequence conservation based on Jensen–Shannon

divergence. We also develop a general heuristic that considers the

estimated conservation of sequentially neighboring sites. In large-

scale testing, we demonstrate that our combined approach outper-

forms previous conservation-based measures in identifying

functionally important residues; in particular, it is significantly

better than the commonly used Shannon entropy measure. We

find that considering conservation at sequential neighbors improves

the performance of all methods tested. Our analysis also reveals that

many existing methods that attempt to incorporate the relationships

between amino acids do not lead to better identification of

functionally important sites. Finally, we find that while conservation

is highly predictive in identifying catalytic sites and residues near

bound ligands, it is much less effective in identifying residues in

protein–protein interfaces.

Availability: Data sets and code for all conservation mea-

sures evaluated are available at http://compbio.cs.princeton.edu/

conservation/

Contact: mona@cs.princeton.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

One of the most important and widely studied problems
in protein sequence analysis is identifying which residues in
a protein are responsible for its function. Knowledge of a
protein’s functionally important sites has immediate relevance
for predicting function, guiding experimental analysis, ana-
lyzing molecular mechanisms and understanding protein
interactions.

Many computational methods have been developed to predict
functionally important residues given a protein sequence.
In this article, we focus on one of the most common approaches:
the analysis of a multiple sequence alignment (MSA) of the
protein and homologous sequences in order to find columns that
are preferentially conserved. These sites are presumed to be
functionally or structurally important because they have
accepted fewer mutations relative to the rest of the alignment.
Conservation analysis has proven to be a powerful indicator

of functional importance and has been used to detect residues
involved in ligand binding (Liang et al., 2006; Magliery
and Regan, 2005), in protein–protein interaction interfaces
(Caffrey et al., 2004; Guharoy and Chakrabarti, 2005;
Mintseris and Weng, 2005), in maintaining structure (Karlin
and Brocchieri, 1996; Schueler-Furman and Baker, 2003;
Valdar and Thornton, 2001), and in determining protein
functional specificity (Hannenhalli and Russell, 2000;
Kalinina, et al., 2003; Lichtarge et al., 1996). Conservation
analysis has also been used in conjunction with structural
information in many of these applications (Landau et al., 2005;
Panchenko et al., 2004).
Computational methods for identifying functional residues

that do not use conservation exist, but they typically require
structural information and are usually employed in the unusual
case where there is an absence or paucity of sequence homologs.
Such structural approaches (review, Jones and Thornton, 2004)
work by either identifying local shared structural patterns
(Fetrow and Skolnick, 1998; Stark and Russell, 2003; Wallace
et al., 1997) or by identifying residues in the protein structure
with unusual electrostatic and ionization properties (Elcock,
2001; Ondrechen et al., 2001). Many recent methods have used
conservation along with other predictors of functional impor-
tance (e.g. solvent accessibility, secondary structure, catalytic
propensities of amino acids, etc.) in a statistical learning
framework (Bordner and Abagyan, 2005; Chung et al., 2006;
Gutteridge et al., 2003). It has been found that conservation is
the single most powerful attribute in predicting functional
importance in these settings (Petrova and Wu, 2006).
While analysis of conservation is a very common approach

with an intuitive basis (Valdar, 2002), there is no universally
agreed upon technique. Here, we introduce and evaluate a new
information-theoretic measure for estimating sequence con-
servation that is motivated by the notion that conserved*To whom correspondence should be addressed.
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positions are under significant evolutionary pressure, and that
positions under pressure are expected to have amino acid
distributions very different from those of columns under no
pressure (Wang and Samudrala, 2006). We quantify this
difference using the Jensen-Shannon divergence (JSD) and an
appropriate background ‘no pressure’ distribution. We also
give a window-based extension of our algorithm that incorpo-
rates the estimated conservation of sequentially adjacent
residues into the score for each column; this window approach
can be applied to any conservation scoring method that gives
columnwise scores.
To compare the JSD conservation measure to previously

proposed methods, we create three data sets that correspond to
different types of functional residues—catalytic residues,
residues close to ligands and residues in protein–protein
interfaces (PPIs)—and give the first large-scale evaluation
of several popular conservation measures in identifying
functional sites.
We consider six previously introduced methods for estimat-

ing the conservation of a column within an MSA. The first and
most commonly used method estimates conservation by
calculating the Shannon entropy (SE) of the amino acid
distribution of each column (Durbin et al., 1998). The second
attempts to take amino acid similarity into account by
partitioning the amino acids into stereochemically similar
groups and then calculating the SE in terms of this partition
(Mirny and Shakhnovich, 1999; Williamson, 1995). The third
incorporates the similarities between amino acids by adapting
the von Neumann entropy (VNE) to operate on a substitution
matrix (Caffrey et al., 2004). The fourth calculates the relative
entropy (RE) (Cover and Thomas, 1991) between a column
distribution and a background distribution (Wang and
Samudrala, 2006); it is similar to our measure in that it
attempts to identify sites that have amino acid distributions
very different from those of columns under no evolutionary
pressure. The fifth takes all pairs of amino acids in a
column and sums their pairwise similarity according to a
similarity matrix (Karlin and Brocchieri, 1996). The sixth,
Rate4Site (R4S), is a sophisticated, computationally intensive
approach that builds a phylogenetic tree for a family of
protein sequences and infers the rate of evolution at each site
(Mayrose et al., 2004).
We evaluate how well these seven conservation measures

perform in identifying functional sites using ROC curves and
by analyzing how often functional sites are within the top
ranking sites. Our main findings are: (1) JSD and R4S perform
similarly, and are not significantly outperformed by any other
method on any data set. However, JSD is several orders of
magnitude faster, suggesting its use in many applications,
such as genome-scale analyses. (2) The performance of JSD
improves when using our approach for incorporating the
conservation of neighboring positions in the protein sequence.
Incorporating the signal from neighboring residues also
improves the performance of the other six methods. While
considering the conservation of positions neighboring in 3D has
been previously shown to improve predictions (Panchenko
et al., 2004), structural information is often unavailable. As a
result, this finding has immediate relevance in conservation
analysis. (3) Many of the conservation methods that explicitly

incorporate amino acid similarity fail to consistently improve
upon the simple SE method. (4) As compared to identifying
catalytic sites and residues near ligands, all the conservation
methods tested are only weakly predictive in identifying
residues in PPIs. This confirms previous analysis (Caffrey
et al., 2004; Mintseris and Weng, 2005) and suggests that
conservation should only be used as one component in
ensemble methods for predicting interaction interfaces
(Bordner and Abagyan, 2005; Chung et al., 2006).
Overall, our testing demonstrates that JSD, used with our

window method to incorporate information from sequential
amino acids, provides a fast, state-of-the art method for
identifying functionally important residues via conservation
analysis. This combined approach performs significantly better
than SE, which is likely the most commonly used method in
conservation analysis. Moreover, we find that our simple
heuristic for incorporating the conservation scores from
sequentially neighboring amino acids results in improved
performance for all methods tested; this suggests that further
development of conservation analysis methods should focus on
better exploiting the signal from neighboring residues. Finally,
our data sets and testing methodology provide a comprehensive
framework for gaining an empirical understanding of the real-
world performance of using conservation scores to identify
functionally important sites, and analysis similar to the one
performed here should be useful in evaluating new proposed
conservation measures.

2 METHODS AND ALGORITHMS

2.1 Conservation scores

Brief descriptions of all methods, previous and new, are given
subsequently. For most methods, there are a number of parameters
to optimize. We have explored the space of reasonable settings and
report the best found parameter settings in the following text.
See Valdar (2002) for a more complete discussion of similar methods
and their evolution.

2.1.1 Preliminaries Each method takes as input a MSA M of
length L over N sequences. Let MC denote the Cth column of the
alignment, and MCi denote the symbol in column C of sequence i.
MCi 2 AA, where AA is the 21 element set of amino acids plus the
gap symbol.
Gaps: Any column that is more than 30% gaps is ignored in the

analysis presented here, because a column with many gaps is unlikely to
be functionally important. Additionally, a simple gap penalty was
applied to all methods except R4S, which handles gaps in its software.
In particular, each raw column score is multiplied by the fraction of
non-gapped positions in the column (Valdar, 2002). If sequence
weighting is used, the gap penalty is weighted as well. We also
performed the analyses ignoring all columns with gaps, and our overall
conclusions did not change (data not shown).
Sequence weighting: An alignment will often contain sequences at a

range of evolutionary distances. If an alignment consists of several very
similar sequences, all columns may look conserved, and it will be
difficult to discriminate positions under evolutionary pressure from
those that are not. We implemented the sequence weighting method
proposed in Henikoff and Henikoff (1994) that rewards sequences that
are ‘surprising’. Sequence weighting is used with all methods and results
given subsequently, except for R4S, which builds an evolutionary tree
as the first part of its analysis.
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Estimating probabilities: Let pC be the distribution of the set
AA in column C; pC is computed subsequently using the
observed (weighted) frequency of each symbol of AA in the column,
with a pseudocount of 10!6.

2.1.2 Previous methods We first describe the six previous
methods.
Shannon entropy of residues: SE (Cover and Thomas, 1991) is one of

the simplest and most common measures of conservation at a site
(Sander and Schneider, 1991; Shenkin et al., 1991). It is defined for a
column C as:

SEC ¼ !
X

!2AA
pCð!Þ log pCð!Þ: ð1Þ

The SE is smallest for a column with complete conservation.
Shannon entropy of residue properties: The previous method does not

take into account biochemical similarity between amino acids. Instead
of treating the amino acids as distinct symbols in the entropy
calculation, several groups (Mirny and Shakhnovich, 1999;
Williamson, 1995) have proposed partitioning the amino acids into
stereochemically defined sets, and then computing the entropy of the
column with respect to these sets. We refer to this conservation scoring
method as property entropy (PE). We use the following grouping
(Mirny and Shakhnovich, 1999): aliphatic [AVLIMC] aromatic
[FWYH], polar [STNQ], positive [KR], negative [DE] and [P].
von Neumann entropy: Caffrey et al. (2004) introduced the use of

VNE (Nielsen and Chuang, 2000), a concept from quantum mechanics,
as an information-theoretic measure of conservation that incorporates
the physicochemical similarity between amino acids. The VNE of a
column C is computed as:

VNEC ¼ !Trð" log"Þ ð2Þ

where " is the density matrix of column C normalized so that Tr(")¼ 1.
The density matrix of a column is computed by creating a matrix where
the diagonal elements are the relative frequencies of amino acids in each
column (ignoring gaps and without a pseudocount), and all other
entries are zero, and multiplying this by target frequencies for an amino
acid similarity matrix. We use the BLOSUM62 matrix as suggested in
Caffrey et al. (2004).
Relative Entropy: RE, or the Kullback–Leibler divergence, is often

used to compare probability distributions (Cover and Thomas, 1991).
The RE conservation score for a column is defined as:

REPC;q ¼
X

!2AA
pCð!Þ log

pCð!Þ
qð!Þ : ð3Þ

If the background distribution, q, lacks gaps (as it does here), then pC
will ignore gaps as well. Magliery and Regan (2005) have applied RE in
order to identify unconserved hypervariable positions, and Wang and
Samudrala (2006) have applied RE to the problem of finding conserved
positions. Unless otherwise stated, we use the overall amino acid
distribution in the BLOSUM62 alignments as the background
distribution.
Sum-of-pairs measure: The SP method scores the conservation of a

column using a similarity matrix S, where S(x, y) is the similarity score
between amino acids x and y. Typically S is a matrix such as one from
the BLOSUM series (Henikoff and Henikoff, 1992). The SP method
encapsulates the overall pairwise similarity between amino acids in a
column. The SP measure for a column C is given by:

SPC ¼ 1
PN

i

PN
j>i wi % wj

%
XN

i

XN

j>i

wi % wj % SðCi;CjÞ; ð4Þ

where wi and wj are the sequence weights for the ith and jth sequences
respectively. While transformations have been proposed to make all
diagonal elements equal to one (Karlin and Brocchieri, 1996), or to give

immutable amino acids greater self-similarity than mutable ones
(Valdar, 2002), we have found that untransformed matrices yielded
the best performance. All results presented subsequently use the
untransformed BLOSUM62 matrix, unless otherwise indicated.

Rate4Site. In contrast to the methods described earlier, the R4S
algorithm (Mayrose et al., 2004) uses a statistical model of evolution to
estimate the rate of evolution, and thus the conservation, at each site.
Briefly, a phylogenetic tree is constructed for the input alignment. The
rates of evolution are assumed to follow a Gamma distribution, and this
distribution is used as the prior in a Bayesian inference scheme. A low
rate of evolution means high conservation at a position. We use the
freely available source code with the default parameters.

2.1.3 New methods We describe a new conservation scoring
method and an extension that can be applied to any of the methods.

Jensen-Shannon divergence score: The JSD (Lin, 1991) quantifies the
similarity between probability distributions. As compared to RE, it has
the advantages of being symmetric and bounded with a range of zero to
one. A ‘background’ amino acid distribution q, estimated from a large
sequence set, can be used to approximate the distribution of amino acid
sites subject to no evolutionary pressure. Then, positions in an
alignment that are found to have amino acid distributions very
different from this background distribution are proposed to be
functionally important or constrained by evolution. JSD is defined
for a column C as:

DJS
C ¼ #REp

C
;r þ ð1! #ÞREðq;rÞ ð5Þ

where: r ¼ #pC þ (1 ! #)q, pC is the column amino acid distribution, q is
a background distribution and # is a prior weight. We use # ¼ 1=2 and
have found that it performs better than other options. Unless otherwise
stated, we use the overall amino acid distribution in the BLOSUM62
alignments as the background distribution. Using alignment specific
backgrounds can provide a slight improvement, but we have found it is
not great enough to justify the added complexity.

While to the best of our knowledge, this is the first use of JSD to
assess sequence conservation, it has been previously used in the context
of comparing sequence profiles (Yona and Levitt, 2002).

Incorporating sequential residues: Positions near in space and
sequence to functionally important residues are known to be more
conserved than average (Bartlett et al., 2002). The conservation of
spatial neighbors can be exploited to improve prediction of functionally
important residues (Panchenko et al., 2004). The conservation of spatial
neighbors is stronger than that of positions near in sequence, but 3D
structures are often unavailable. Thus we developed the following
heuristic method to incorporate the conservation of positions near in
sequence into the score for a column:

WindowScoreC ¼ #SC þ ð1! #Þ
P

i2windowSi

jwindowj
ð6Þ

where Si is the raw score of column i and window is a set containing
the indices of all columns in the window around column C. We find
# ¼ 1=2 and a window size of three residues on either side of C
works well. This window technique can be applied to any conservation
scoring method that gives columnwise scores. When discussing the
windowed version of a method, we will append ‘þW’ to the name of the
method. Additionally, we call the non-windowed version of a method
‘basic.’

2.2 Data sets

We have created three data sets that reflect varying contexts in which
conservation-based analysis is commonly applied. The data sets are by
nature imperfect, as we rarely know all the functionally important
residues in a protein. Indeed it is often not clear how to define
‘functionally important’. Moreover, it is difficult to determine whether

Predicting functional residues using conservation
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a position that appears to be conserved, but is not known to be
functionally important, is constrained or simply has not had enough
time to diverge. To account for this uncertainty, we construct the data
sets to include different types of functional sites, with the hope that the
shortcomings of one will be less prevalent in another. We will look for
consistent results across these data sets, using various performance
metrics, to judge the performance of conservation measures.

2.2.1 Catalytic site data set We created the first data set using
known catalytic sites obtained from the Catalytic Site Atlas (CSA)
(Porter et al., 2003), a literature derived database of enzyme active sites
and catalytic residues. For each literature based entry in the CSA as of
June 8, 2006, we obtained the 3D structure of the protein chain from the
Protein Data Bank (PDB) (Berman et al., 2000). The structures’
sequences were then clustered at 95% sequence identity and redundant
structures were removed. Sequence alignments for each remaining
structure were then obtained from HSSP (http://swift.cmbi.kun.nl/gv/
hssp/) (Dodge et al., 1998). These alignments were filtered to improve
alignment quality by removing sequences with more than 95% sequence
similarity to the original CSA sequence or whose length was more than
two SD away from it. Any alignment with fewer than five sequences
was removed. After filtering, 645 alignments with an average of
'79 sequences per alignment and '1900 catalytic sites remained.
The annotated catalytic sites for each protein serve as positives
(i.e. functionally important residues) and all other residues are
negatives.

We note that many positions in protein cores are conserved for
structural reasons. We do not want to penalize methods for giving these
likely non-catalytic positions high scores. However, many catalytic sites
have low relative solvent accessibility (RSA); for example 5% of
catalytic sites have 0% RSA (Bartlett et al., 2002). To resolve this
tension between leaving out known positives and excluding positions
that are likely important but unannotated, we performed the analysis
both with and without residues that have RSA less than 1%. There was
little change in the relative performance of the measures on all data sets
(see Supplementary Material). The results presented here include all
columns and catalytic sites. Most sequences do not have known
structures, thus this represents the more common scenario in which
conservation analysis is applied.

2.2.2 Ligand Distance The second data set is based on a less
restrictive definition of functionally important. The increased conserva-
tion found in the binding sites of enzyme ligands (Bartlett et al., 2002) is
used to compare methods without making many assumptions about the
type of functional site sought.

The Enzyme Commission (EC) (Bairoch, 2000; Webb, 1992) provides
a classification of known enzymes into functional groups. For each EC
class, we retrieve all structures present in the PDB. For each structure
with resolution better than 2.5 Å, we check to see if it contains bound
ligands similar to the substrates required for the reaction catalyzed by
the enzyme, using a similarity cutoff of 50% as defined by PDBSum
(Laskowski et al., 2005). The structures’ sequences are then clustered at
the level of 95% sequence identity within each EC class, and a non-
redundant set is kept for analysis. For each structure that remains in
each EC class, we download the alignment from HSSP and filter it as
for the catalytic site data set. For each structure, we put all residues
within 4 Å of any ligand atom into the set of putative positive residues.
This may include some positions that are not functionally important,
but the area around the active site contains a strong enough
conservation signal that we are able to distinguish between methods
by the number of highly conserved positions each predicts near ligands.
All remaining residues comprise our set of negatives. We are
left with 828 alignments with an average of '92 sequences per
alignment. The alignments span 495 EC classes and provide an
average of '1.6 alignments per class. We also performed the analysis

excluding all residues that have less than 1% solvent accessibility and
obtained similar results (see Supplementary Material).

2.2.3 Protein-protein interfaces We use the data set of Caffrey
et al. (2004) consisting of 64 PPIs: 42 homodimers, 12 heterodimers and
10 transient complexes. For each interface, they provide an alignment
of close homologs and an alignment of diverse homologs. We present
results for the close homolog alignments; performance is similar on the
diverse alignments (Supplementary Material). Interface residues,
comprising the set of positives, are defined as those losing more than
1% RSA on complex formation; as suggested by Caffrey et al. (2004),
we compute RSA using NACCESS (Hubbard and Thornton, 1993;
Lee and Richards, 1971) with a probe size of 1.4 Å. All other residues
are the negatives. We also evaluated the methods by removing
all positions that have less than 1% solvent accessibility in the
monomer; results were similar on this modified data set
(see Supplementary Material).

2.3 Evaluation methods

Conservation scoring methods are compared on a data set by
considering how well they rank the positive set of functionally
important residues, as well as by computing receiver operator
characteristic (ROC) curves.
For ROC analysis, a ROC curve is constructed for each method on

each alignment, and all the ROC curves for a method are averaged
across all alignments to obtain its overall curve. For the ligand distance
data set, ROC curves are first averaged over each EC class and then
averaged across classes; this is done because some EC classes have more
alignments than others. We report the area under the ROC curve
(AUC) at a range of false positive rates: 0.1 (AUC0.1), 0.5 (AUC0.5) and
1.0 (AUC1). The higher the AUC, the better the method has done at
identifying functional residues.
In the rank analysis, for each alignment we compute the conservation

scores for all columns and note the rank of the known functionally
important columns. We report the fraction of the top 30 ranked
columns that are functionally important (Wang and Samudrala, 2006);
however, since the number of positives may be less than 30, we
normalize the statistic so that perfect performance (i.e. all possible
positives in the top 30 predictions) gets a score of one. These top-30
statistics are averaged over all alignments, and in the case of the ligand
distance data set, are first averaged over EC class and then averaged
over the classes.
We use the Friedman test, as implemented in Matlab, to judge

whether the performance statistics (e.g. AUC1) for the methods are
significantly different. For the CSA and PPI data sets, when judging
each statistic, comparisons of its value on each alignment are
considered; for the ligand distance data, comparisons are made between
its averaged value for each EC class. Since for each statistic, the values
for all pairwise combinations of methods are compared, we further
apply a Bonferroni correction to judge significance. The difference in
performance of two methods using a particular statistic is called
statistically significant if the P-value computed using the Friedman test
with a Bonferroni correction is less than 0.05.

3 RESULTS

The seven methods are evaluated in their ability to identify
functional sites in the three data sets. The performance
statistics—averaged AUCs and top-30—for all basic methods
are summarized for the catalytic site (CSA) data set in Table 1,
the ligand distance data set in Table 2 and the close homolog
PPI data set in Table 3. The relative performance of these
methods using the AUC1 performance statistic is also
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depicted graphically for the CSA and ligand distance data sets
in Figure 1. These relationships are not shown for the PPI data
set, as the only significant differences on it between methods at
the AUC1 level involve comparisons with the worst performing
method. The top-30 improvement provided by using the
window heuristic on each method on each data set is given in
Table 4. In the following text we describe our main findings in
detail.

3.1 JSD is not significantly outperformed by any other
basic method

Tables 1, 2 and 3 show that JSD, RE and R4S perform better

than the other four basic methods when considering any of the

performance statistics on any of the data sets. The significance

chart in Figure 1 illustrates that JSD and R4S perform

significantly better at the AUC1 level on both the CSA and

ligand distance data sets than all the other methods, including
RE. For the CSA data set, JSD outperforms R4S on all criteria,

whereas on the ligand distance data set, R4S outperforms JSD

using all criteria (Tables 1 and 2). The differences between these

methods on the PPI data set are not significant, but Table 3

shows that JSD and RE are the best performing methods on

Table 1. Performance statistics for all methods on the catalytic site
data set

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon Entropy 0.0524 0.4248 0.9235 0.6783
Property Entropy 0.0338 0.3780 0.8749 0.4328
von Neumann Entropy 0.0499 0.4211 0.9166 0.6462
Sum-of-pairs measure 0.0528 0.4291 0.9271 0.6374
Relative Entropy 0.0599 0.4436 0.9428 0.7120
Rate4Site 0.0615 0.4451 0.9412 0.7240
Jensen-Shannon divergence 0.0623 0.4464 0.9440 0.7338

Area under the ROC curve is given for the 0.1 (AUC0.1), 0.5 (AUC0.5) and
1.0 (AUC1) false positive rates. Top-30 is the normalized fraction of the top
30 scoring sites that are functionally important (see text). The best scores are
in bold. JSD and R4S are significantly better than all other methods at
the AUC1 level.

Table 2. Performance statistics for all methods on the ligand distance
data set

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon Entropy 0.0093 0.3238 0.8036 0.3960
Property Entropy 0.0049 0.2813 0.7590 0.2822
von Neumann Entropy 0.0089 0.3138 0.7934 0.3816
Sum-of-pairs measure 0.0086 0.3141 0.7898 0.3759
Relative Entropy 0.0098 0.3311 0.8119 0.4076
Rate4Site 0.0109 0.3394 0.8238 0.4312
Jensen-Shannon divergence 0.0107 0.3345 0.8153 0.4220

See Table 1 for a description of the statistics.

Table 3. Performance statistics for all methods on the close homolog
protein interface data set

Method AUC0.1 AUC0.5 AUC1 Top-30

Shannon Entropy 0.0060 0.1352 0.5203 0.1692
Property Entropy 0.0037 0.1160 0.4968 0.1225
von Neumann Entropy 0.0059 0.1367 0.5265 0.1670
Sum-of-pairs measure 0.0069 0.1380 0.5217 0.1806
Relative Entropy 0.0079 0.1529 0.5468 0.1948
Rate4Site 0.0075 0.1466 0.5433 0.1772
Jensen-Shannon divergence 0.0079 0.1516 0.5437 0.1960

See Table 1 for a description of the statistics.

JS divergence JS divergenceRate4Site

(a) (b)

Rate4Site

Relative entropy Relative entropy

Sum of pairs Sum of pairsShannon entropy

Shannon entropy

von Neumann entropy

von Neumann entropy

Property entropy

Property entropy

Fig. 1. Significance relationships at AUC1 level for the (a) catalytic site
and (b) ligand distance data sets. An edge from method X to method Y
means that method X performs significantly better than method Y.
A path between two nodes implies a significant difference as well.

Table 4. Improvement in top-30 performance provided by the window
heuristic for all methods

Method CSA Ligand PPI

SE 0.6783 0.3960 0.1692
SEþW 0.7077 0.4583 0.2000

PE 0.4328 0.2822 0.1225
PEþW 0.5928 0.3840 0.1772

VNE 0.6462 0.3816 0.1670
VNEþW 0.6979 0.4422 0.1960

SP 0.6374 0.3759 0.1806
SPþW 0.6995 0.4264 0.2034

RE 0.7120 0.4076 0.1948
REþW 0.7507 0.4546 0.2205

R4S 0.7240 0.4312 0.1772
R4SþW 0.7197 0.4795 0.2205

JSD 0.7338 0.4220 0.1960
JSDþW 0.7539 0.4703 0.2205

The better score between the basic method and its windowed version is in bold.
Full statistics are provided in the supplement.
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this data set. Overall, the results are similar if we consider the
top-30 statistic; JSD, RE and R4S are all significantly better
than the other methods on the catalytic site and ligand distance
data sets. Note that while SE is probably the most commonly
used method for identifying functionally important residues via
conservation analysis, our evaluation shows that in all settings
tested it is outperformed by other methods (Fig. 2).

3.2 JSD performs similarly to R4S, but is much faster

Overall, JSD and R4S perform similarly; none of the
differences in performance observed between them on any of
the data sets using any of the statistics are significant (Fig. 1).
However, JSD and the other information-theoretic methods
have a significant advantage over R4S when considering run
time. Table 5 gives (processor) running time statistics for
several methods on a benchmark set of 25 randomly chosen
alignments from the CSA data set. R4S took over 2.5
h (9563.22 s) to score these 25 alignments while JSD required
only 11.81 s; JSD finishes scoring all 25 in less time than R4S
needs to score the smallest alignment. RE’s running time is
similar to JSD’s. In light of this and the performance results,
JSD is the best method for the estimation of conservation in
contexts where speed is an issue, such as large, genome-scale
analysis.

3.3 Incorporating the conservation of sequentially
adjacent positions improves performance

Our heuristic for exploiting conservation scores within a
sequence window around the residue of interest can be applied
to any scoring method that produces independent column
scores. Using a window of size seven (three residues on either
side of the current residue), all methods improve on each of the
three data sets (Table 4), as judged by top-30. The results are
similar for the other statistics (see Supplementary Material for
all performance statistics for windowed approaches). Note that
the window method improves predictions for all types of
functional sites, not just those with low conservation. In fact, as
Table 4 shows, the improvement is greater for sites with high
conservation (catalytic residues and residues near ligands) than
for sites in protein interfaces.
Figure 3 shows the improvement on the CSA data set for SE

and JSD when our window approach is used. The figure depicts
the high-confidence region of the ROC curve. The difference
between JSDþW and SE illustrates the improvement provided
by methods introduced in this article; at a false positive rate of
2%, JSDþW identifies over 50% of the true positives while SE
finds only '30%. Note that when SE is extended to incorporate
the conservation of sequentially adjacent positions, it performs
nearly as well as the basic JSD method. This highlights the
power of simply using the window approach with existing
scoring methods. The consistent improvement provided by the
window heuristic suggests that it can improve predictions in a
range of settings.

3.4 Incorporating relationships between amino acids is
not always helpful

Three of the methods considered, VNE, SP and PE, attempt to
incorporate information about the similarity of amino acids.
One would expect that, since pairs of amino acids have differing
physicochemical similarities, incorporation of such information
would improve upon other methods that do not. Our
evaluation framework allows us to assess this claim by
characterizing the performance of VNE, SP and PE relative
to the commonly used SE.
Figure 1 shows that using the AUC1 criterion, SE is

significantly better than VNE, PE and SP on the ligand
distance data set, and significantly better than VNE and PE on
the CSA data set. While SP performs better than SE on the
CSA data set using the AUC1 criterion, the difference is not
statistically significant. The differences between these methods
on the PPI data set are not significant; however, SE performs
best of the four as judged by top-30, SP performs best as judged
by AUC0.1 and AUC0.5 and VNE performs best as judged by
AUC1.
We also evaluated the effect of using different BLOSUM

matrices with VNE and SP. We found that the choice of matrix
does not change our overall results. For the SP method, we
additionally experimented with alignment-specific matrices. In
particular, for each alignment considered, we computed the
average pairwise sequence identity and selected the nearest of
BLOSUM45, BLOSUM62 and BLOSUM80. This scheme also
did not improve overall results (see Supplementary Table 8).

Table 5. Running time on a set of 25 alignments randomly selected
from the catalytic site data set

Method Min Time Max Time Average Total

Shannon Entropy 0.18 s 1.18 s 0.45 s 11.18 s
Jensen-Shannon divergence 0.20 s 1.21 s 0.47 s 11.81 s
Sum-of-pairs measure 0.20 s 23.44 s 3.87 s 96.75 s
Rate4Site 18.66 s 1976.38 s 382.53 s 9563.22 s

The JSD takes several orders of magnitude less time than R4S and provides
competitive performance. All information-theoretic methods have similar
running times.
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Fig. 2. High confidence region of the ROC curves for SE, JSD, R4S,
and RE on the catalytic site data set. The three methods all perform
significantly better than SE.
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These results highlight the need for large-scale evaluation.
While it might be expected that PE, VNE and SP would
improve on SE, none provide any significant gain. In fact, in
several settings, some perform significantly worse than SE.
VNE was introduced for the prediction of PPI residues (Caffrey
et al., 2004), but is not significantly better on the PPI data set as
judged by any of the four statistics tested. PE was introduced
for the analysis of ligand recognition in transport proteins, and
SP for the analysis of DNA-binding proteins. It is possible that
these methods could achieve better performance in other
specific settings, but the three contexts investigated here are
quite common and similar to those in which they were
introduced.

3.5 Identifying residues in the PPI from conservation
alone is difficult

Recently, conservation analysis has been employed to
predict and analyze protein-protein interaction sites (Border
and Abagyan, 2005; Caffrey et al., 2004 and Guharoy and
Chakrabarti, 2005). Several of these groups have found that
it is difficult to predict the interface using various measures
of conservation. Here, we find that none of the seven
conservation measures studied perform particularly well in
identifying residues in protein interfaces (Table 3). We report
statistics from the close homolog alignments, but results are
similar for the diverse homolog set (see Supplementary
Material). The AUC1 values for all methods are approximately
0.55, as compared to much better performance in identifying
catalytic site residues (AUC1( .95) and the sites near ligands
(AUC1( .80). However, while the conservation signal on the
interface is weak, it is still detectable; all methods other than
PE performed significantly better than random guessing.
This suggests that conservation alone should not be used to
predict residues in PPI. However, it is an important component
of ensemble-based approaches (Chung et al., 2006).

4 DISCUSSION AND CONCLUSION

Despite the prevalence of conservation-based analysis, there are
few agreed upon best practices. This article establishes an
empirical understanding of the relationships between
approaches. We describe several methods for quantifying
conservation and introduce a method based on the JSD as
well as a heuristic for incorporating the conservation signal
from sequentially neighboring residues. We then quantitatively
compare the performance of all methods in three realistic
settings: the identification of catalytic sites, residues near
ligands and residues comprising PPIs.
Our evaluation demonstrates that methods such as JSD

and RE that incorporate a background amino acid distribution
are preferable to SE (Fig. 2). R4S also provides similar
improvement over SE, but is quite slow in comparison to the
information theoretic methods (Table 5). The speed of JSD
would allow researchers to modify alignments and re-predict
functional sites on the fly. It also makes large-scale analysis
faster and more appealing. While JSD and RE are similar
measures, overall RE does not perform quite as well as JSD.
RE is unbounded; events that are unlikely according to the
background or column distributions tend to contribute more to
the RE score than to the JSD score, and this likely causes the
difference in performance between the two methods.
We also demonstrate that our window heuristic provides a

way to boost the conservation signal, and thus performance,
even in the absence of structural information. This improve-
ment is seen across methods and data sets. The approach is fast,
flexible and can be applied to any method that produces
column scores.
Perhaps most surprisingly, we find that several methods that

intend to improve conservation estimation by incorporating
amino acid similarity fail to provide any significant improve-
ment over methods that ignore the underlying chemistry. In
fact, some perform significantly worse than SE. While it may be
the case that incorporating amino acid similarity is not critical
for identifying functional sites, it is more likely that the existing
set of methods are not adequate, and other as yet undeveloped
methods may be able to exploit better the similarities between
amino acids. Additionally, it is possible that the data sets of
known functional sites are biased towards absolutely conserved
residues, and thus incorporating relationships between amino
acids is not essential for good performance on them.
The poor performance of all methods on the PPI data set

demonstrates that the difficulties encountered in previous
attempts (Bordner and Abagyan, 2005; Caffrey et al., 2004)
exist across a range of conservation methods. It is likely that the
results could be improved by dividing the data set into transient
and obligate interactions (Mintseris and Weng, 2005) and
further dividing the interface into central and peripheral
residues. Nevertheless, it is clear that conservation alone is
insufficient to predict all residues in PPIs.
When interpreting the predictions made by a conservation-

based method, it is natural to ask whether a site is important for
maintaining structure, for catalysis, or for binding ligands,
other proteins or DNA. Conservation alone cannot distinguish
among these possibilities; however, features such as amino acid
composition, electrostatic potential and known or predicted
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Fig. 3. High confidence ROC curves demonstrating the improvement
for SE and JS divergence when used with the window method on the
CSA set. The difference between SE (dashes) and Window JSD
(triangles) is the improvement provided by methods introduced in this
article. Similar improvement is seen across methods and data sets.
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structural properties (e.g. secondary structure and solvent
accessibility), used along with conservation, can be used
within machine-learning methods to identify particular types
of functional residues (Bordner and Abagyan, 2005; Petrova
and Wu, 2006).
Overall our results highlight the necessity for rigorous

evaluation of conservation methods. Conservation analysis is
beginning to be applied in settings where the signal is not strong
(e.g. the prediction of protein interaction sites). Thus,
comprehensive analyses such as the one performed here are
increasingly important in order to develop an empirical
understanding of the strengths and weaknesses of various
methods; this understanding can then be used to guide
development of more powerful techniques for estimating
sequence conservation in diverse biological settings.
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