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Abstract

Multiple distal cis-regulatory elements (CREs) often cooperate to regulate gene expression, and the presence of multiple CREs 
for a gene has been proposed to provide redundancy and robustness to variation. However, we do not understand how at
tributes of a gene’s distal CRE landscape—the CREs that contribute to its regulation—relate to its expression and function. 
Here, we integrate three-dimensional chromatin conformation and functional genomics data to quantify the CRE landscape 
composition genome-wide across ten human tissues and relate their attributes to the function, constraint, and expression 
patterns of genes. Within each tissue, we find that expressed genes have larger CRE landscapes than nonexpressed genes 
and that genes with tissue-specific CREs are more likely to have tissue-specific expression. Controlling for the association be
tween expression level and CRE landscape size, we also find that CRE landscapes around genes under strong constraint (e.g., 
loss-of-function intolerant and housekeeping genes) are not significantly smaller than other expressed genes as previously 
proposed; however, they do have more evolutionarily conserved sequences than CREs of expressed genes overall. We 
also show that CRE landscape size does not associate with expression variability across individuals; nonetheless, genes 
with larger CRE landscapes have a relative depletion for variants that influence expression levels (expression quantitative trait 
loci). Overall, this work illustrates how differences in gene function, expression, and evolutionary constraint are reflected in 
features of CRE landscapes. Thus, considering the CRE landscape of a gene is vital for understanding gene expression dynam
ics across biological contexts and interpreting the effects of noncoding genetic variants.
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Significance
Gene regulation is essential to all cellular and evolutionary processes, from development to speciation. We can now map 
individual cis-regulatory elements (CREs) genome wide, and many distal CREs often work in combination to regulate 
gene expression (CRE landscapes). However, we do not yet know how the attributes of CRE landscapes relate to differ
ences in gene expression and function. By integrating diverse genomic data, we define CRE landscapes across ten hu
man tissues and uncover the complex relationships between gene function and CRE landscape size, constraint, and 
tissue specificity. Understanding regulatory landscapes will allow future work to incorporate these features when inter
preting the effects of genetic variation on gene expression and phenotype.
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Introduction
Cis-regulatory elements (CREs) regulate gene expression by 
binding transcription factors and modulating transcription 
across diverse cell types. Combinations of distal CREs can 
act additively, synergistically, or redundantly to mediate ex
pression of the same target gene (Dukler et al. 2016; Hay 
et al. 2016; Shin et al. 2016; Moorthy et al. 2017; Will 
et al. 2017; Xie et al. 2017; Osterwalder et al. 2018). For ex
ample, studies in Drosophila have established that the pres
ence of multiple enhancers for a gene often provides 
robustness to genetic variation (Hong et al. 2008; Hobert 
2010; Cannavò et al. 2016). Redundant “shadow enhan
cers” can maintain appropriate gene expression when 
other enhancers regulating the same target gene are inac
tivated (Hong et al. 2008; Letelier et al. 2018). In other 
cases, CREs in Drosophila have more complex context- 
and position-dependent functional relationships (Cannavò 
et al. 2016; Scholes et al. 2019). Studies of 
super enhancers, enhancer domains, and CRE redundancy 
in mice and humans suggest that similar interactions 
among CREs are widespread in mammalian species (Hay 
et al. 2016; Shin et al. 2016; Berthelot et al. 2018; Huang 
et al. 2018; Osterwalder et al. 2018; Wang and Goldstein 
2020). The complexity of a gene’s regulatory landscape 
has also recently been proposed to differentially influence 
power to detect expression quantitative trait loci (eQTL) 
and associations between genetic variants and traits 
(Mostafavi et al. 2022). Given the contribution of multiple 
distal CREs to the expression of many genes, consideration 
of the full CRE landscape is crucial to interpreting variation 
in gene expression across tissues, individuals, and even 
species.

However, previous work on CRE landscapes is largely 
confined to studies in model organisms and a small number 
of tissues. As a result, we do not understand how features 
of the CRE landscape relate to constraints on gene expres
sion or alter the impact of genetic variation in humans. 
Furthermore, three-dimensional (3D) chromatin looping fa
cilitates CRE activity by modifying the physical proximity of 
CREs and the genes they regulate. Increasingly high- 
resolution experimental approaches to map the 3D archi
tecture of the genome are becoming available for a range 
of human cellular contexts (Kempfer and Pombo 2019). 
These data provide an additional dimension in which to 
characterize gene regulatory landscapes by mapping CREs 
to their putative target genes.

We address these gaps by defining CRE landscapes by in
tegrating 3D chromatin conformation data with functional 
genomic and evolutionary characterization of human CREs. 
We then study the relationship between CRE landscapes 
and variation in gene expression across both tissues and in
dividuals. We consider multiple attributes of CRE land
scapes, including the number of active CREs, the physical 

proximity between CREs and a given target gene, and tissue 
specificity. We observe that differences in gene function 
and constraint on gene expression are reflected in features 
of their CRE landscapes, including the number and tissue 
specificity of associated CREs. Our results provide a map 
of CRE landscapes across ten human tissues and demon
strate the importance of considering the CRE landscape 
when studying gene expression dynamics and interpreting 
the effects of regulatory genetic variation on expression.

Results

Integration of Histone Modification and Chromatin 
Conformation Data Reveals Context-Specific Distal CRE 
Landscapes

We integrated genome-wide 3D contact maps from Hi-C 
experiments matched with functional genomics data to 
characterize CRE landscapes across ten cellular contexts. 
We defined distal CREs by the presence of an H3K27ac his
tone modification peak not overlapping an H3K4me3 peak 
from the Roadmap Epigenomics Project. We then com
bined these with machine-learning–based chromatin loop 
predictions that integrate data from multiple chromatin 
conformation assays to account for variable read depth 
across tissues (Materials and Methods) (Salameh et al. 
2020). These loops define 3D domains where CREs and 
genes are in physical proximity (fig. 1A).

We linked each CRE to a gene if the CRE and the gene’s 
transcription start site (TSS) are within the same chromatin 
loop. Overlapping loop regions were merged, taking the 
union of all potential CRE–gene connections, when defin
ing the CRE landscape. Across tissues, this conservative ap
proach links an average of 38% of CREs and 29% of 
expressed genes; this corresponds to nearly all genes pre
sent inside of a loop (96% total, 98% expressed; table 1
and supplementary table S1, Supplementary Material on
line). Most genes with a chromatin loop–based CRE land
scape are linked with multiple CREs (average 18 CREs; fig. 
1B and C and supplementary table S2, Supplementary 
Material online).

We also considered additional strategies for defining 
CREs (ChromHMM) and for linking CREs to genes (a contact- 
based CRE landscape definition and the Activity-By-Contact 
[ABC] model). Results were similar when using CREs defined 
by ChromHMM (Supplementary Note S1, Supplementary 
Material online), so we focus on the larger histone modifica
tion–based CREs in the main text. We found that both of the 
alternative approaches for linking genes and CREs had lim
itations (Supplementary Note S1 and supplementary figs. 
S1–S4, Supplementary Material online). The contact-based 
approach was limited by sequencing depth, which influ
enced the ability to identify significant chromatin interac
tions in different tissues. The ABC model was limited by 
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data availability. It could only be applied in six of the avail
able tissues, and it linked a small fraction of CREs to genes. 
Moreover, the ABC links in our CRE definition were a subset 
of Peakachu links (supplementary fig. S4, Supplementary 
Material online). Thus, we focus on the loop-based method 
in the main text due to its stability across tissues and robust
ness to differences in sequencing depth. Nonetheless, 
when possible, we confirmed results using the other linking 
strategies and report these in the Supplementary Material.

Expressed Genes Have a Greater Number of CREs in 
Their CRE Landscapes

We first evaluated whether properties of a gene’s CRE land
scape are associated with its expression patterns within and 
across tissues. Across all ten tissues we considered, genes 
expressed in a tissue have a larger number of active CREs 
than genes that are not expressed in that tissue (fig. 2A). 
In the spleen, for example, the median number of loop- 
based CREs for expressed genes is 23, compared with 14 
for genes not expressed in the spleen (Mann-Whitney U P =  

5.0E−51; fig. 2A and supplementary table S3, 
Supplementary Material online).

We also found that expression level among expressed 
genes is positively correlated with the number of CREs in 
a gene’s landscape (Spearman ρ = 0.17–0.33 across tissues; 
fig. 2B and supplementary figs. S6 and S7 and table S4, 
Supplementary Material online). For example, in the spleen 
(ρ = 0.23, P = 9.6E−81), genes in the lowest expression 
quartile have a median of 17 CREs in their landscape, while 
genes in the highest quartile of expression have a median of 
30 CREs in their landscapes.

Tissue Specificity of Gene Expression Is Reflected in the 
Tissue Specificity of the CRE Landscape

We observed variability in the number of CREs associated 
with genes expressed in each tissue. We hypothesized 
that the tissue specificity of a gene’s expression and the ac
tivity patterns of its CREs contribute to this variability. We 
tested whether genes with more tissue-specific expression 
patterns had a higher proportion of tissue-specific CREs.
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FIG. 1.—Integrated histone modifications and Hi-C loop predictions define CRE landscapes. (A) We define the chromatin loop-based CRE landscape for a 
gene as the union of all active, distal CREs in a chromatin loop region with the gene’s TSS. We define CRE landscapes for each tissue using chromatin con
formation and histone modification (H3K27ac without H3K4me3) data. If a gene’s TSS overlapped multiple loops, the CREs in all overlapped loops were in
cluded. The horizontal line represents the linear genome sequence, and the three triangles represent chromatin loops. CREs are shown using filled rectangles, 
and the landscapes for each gene are shown underneath the genome line and aligned to match each CRE in the reference schematic. (B) The distribution of 
the number of CREs per loop in the spleen. (C) The distribution of the number of genes per loop in the spleen. The distributions shown in (B) and (C) have 
similar shapes for the other nine tissues (supplementary fig. S2, Supplementary Material online). (D) The distribution of the number of CREs per gene in the 
spleen.

Cis-regulatory Landscape Size, Constraint, and Tissue Specificity Associate with Gene Function and Expression                 GBE

Genome Biol. Evol. 15(7) https://doi.org/10.1093/gbe/evad126 Advance Access publication 6 July 2023                                            3

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
https://doi.org/10.1093/gbe/evad126


Across all tissues, the proportion of tissue-specific CREs 
in each landscape is higher for genes with tissue-specific ex
pression than for expressed genes overall (11 more CREs on 
average; fig. 2C). This trend replicates in the contact-based 
landscapes for all tissues (supplementary fig. S8A and 
table S5, Supplementary Material online). We also tested 
whether there was a difference in the number of CREs or 
the level of CRE sequence conservation. In some of the bio
logical contexts, such as the liver, tissue-specific genes also 
have a greater number of associated CREs (supplementary 
fig. S8B, Supplementary Material online); genes with tissue- 
specific expression linked to CREs in the liver have signifi
cantly more CREs in their landscapes than genes with broad 
expression (median 20 CREs v. 15 CREs). However, this 
trend is not consistent across tissues or landscape defini
tions (supplementary fig. S8B and C, Supplementary 
Material online). Similarly, we do not find a consistent dif
ference between the proportion of conserved sequences 
in CRE landscapes for tissue-specific and broadly expressed 
genes matched on expression level (supplementary fig. S9, 
Supplementary Material online). In six of the ten tissues, 
there is no difference in the level of CRE landscape 
conservation.

Housekeeping and LoF Intolerant Genes Have Similar 
CRE Landscape Sizes as Other Genes after Controlling 
for Expression Level

Previous work in model organisms suggests that the num
ber and redundancy of CREs regulating a gene is associated 
with gene function (Osterwalder et al. 2018). We sought to 
evaluate the proposed relationship between housekeeping 
genes and smaller CRE landscapes in human tissues. Given 
the correlation between CRE landscape size and gene ex
pression levels (fig. 2), we controlled these tests for expres
sion level in each tissue (Materials and Methods). We find 
that although there may be simpler regulatory control for 
constitutively active genes in some contexts, it is not a uni
versal pattern across human tissues. After matching on 

gene expression level and the presence of at least one 
CRE, we found that housekeeping genes have significantly 
fewer CREs than expressed genes in three tissues: liver, 
heart, and ovary (fig. 3A and supplementary table S6, 
Supplementary Material online). In these tissues, house
keeping genes had an average of 4 fewer CREs than ex
pressed, nonhousekeeping genes. However, the trends 
were not consistent in the other tissues we considered or 
when using the contact-based definition (supplementary 
table S6, Supplementary Material online).

We also hypothesized that genes under strong con
straint on their expression, like loss-of-function (LoF) in
tolerant genes, would have more associated CREs to 
provide the potential for regulatory buffering or finer con
trol of expression levels (Lek et al. 2016; Karczewski et al. 
2020). However, after matching for gene expression level, 
LoF intolerant genes did not have significantly different 
numbers of associated CREs than expressed genes in any 
of the tissues considered (supplementary table S7, 
Supplementary Material online). For example, in spleen, 
the median number of CREs in the landscape of both LoF 
intolerant genes and matched, expressed genes is 25 (fig. 
3B and supplementary table S7, Supplementary Material
online).

CRE Landscapes of Housekeeping and LoF Intolerant 
Genes Have Higher Sequence Constraint

Given the lack of consistent trends between constrained 
gene function and CRE landscape size, we hypothesized 
that the functional importance of the gene might instead 
be reflected in the level of DNA sequence constraint in its 
CRE landscape. Indeed, housekeeping and LoF intolerant 
genes have a higher proportion of evolutionarily conserved 
CREs in their landscapes compared with matched sets of ex
pressed genes across most tissues (fig. 3C and D). On aver
age, housekeeping genes have a 14% increase in the 
proportion of PhastCons elements in their CRE landscapes, 
while LoF intolerant genes have a 27% increase. The trend 

Table 1 
Summary Statistics for Loop-Based CRE Landscapes

Tissue # Loops Mean Length 
(kb)

# CREs % Linked 
CREs

# Linked 
Genes

# Linked Exp 
Genes

% Linked Exp 
Genes

# Linked Tissue-specific 
Genes

Spleen 13,753 191.2 107,591 58% 8,292 6,502 52% 455
Liver 15,059 209.9 83,547 55% 7,482 4,889 45% 443
Heart 14,177 210.3 128,298 49% 5,003 3,680 31% 270
Hippocampus 11,425 201.4 110,817 43% 4,989 3,860 31% 431
Lung 9,184 188.8 194,643 40% 4,627 3,790 28% 319
Pancreas 11,287 172.8 90,439 34% 5,011 3,288 30% 232
Prefrontal cortex 7,796 189.2 175,702 30% 3,517 2,806 22% 333
Muscle 6,811 177.4 150,967 29% 2,977 2,038 19% 156
Small intestine 10,214 173.3 172,920 27% 3,128 2,462 19% 260
Ovary 5,646 167.6 187,690 17% 1,540 1,135 9% 76

Benton et al.                                                                                                                                                                    GBE

4 Genome Biol. Evol. 15(7) https://doi.org/10.1093/gbe/evad126 Advance Access publication 6 July 2023

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad126#supplementary-data
https://doi.org/10.1093/gbe/evad126


also replicates in a smaller number of tissues using the 
contact-based approach (supplementary tables S6 and S7, 
Supplementary Material online).

The number of CREs in a landscape is modestly corre
lated with the proportion of conserved base pairs in the 
CREs (% PhastCons overlap; Spearman ρ = 0.05–0.17 
over all tissues; supplementary table S8, Supplementary 
Material online). The correlations are similar between the 

number of CREs and the probability of negative selection 
measured by the LINSIGHT scores of the CREs (mean 
LINSIGHT score; Spearman ρ = 0.01–0.15; supplementary 
table S8, Supplementary Material online). However, these 
correlations correspond to small changes in the overall con
servation score. For example, in the spleen, the median 
LINSIGHT score for a CRE from a small landscape (first quar
tile) is 0.16, while the median score for a CRE from a large 

A

B C

FIG. 2.—CRE landscapes reflect the expression level and tissue specificity of their associated genes. (A) Genes expressed in a tissue (right) have a larger 
number of CREs in their landscape active in the same tissue than nonexpressed genes (left). We consider expressed genes as those with a TPM > 1 and high
light significant differences (P < 0.05) with a “*”. This holds across all tissues considered and for contact-based CRE landscape definitions (supplementary fig. 
S5, Supplementary Material online). (B) Genes with higher expression have larger numbers of CREs in their CRE landscapes. The boxplot shows the number of 
CREs in the CRE landscape of each gene for genes divided into quartiles based on expression level (in the spleen). This trend is consistent across tissues and CRE 
landscape definitions (supplementary figs. S6 and S7, Supplementary Material online). (C) Genes with tissue-specific expression patterns have a greater pro
portion of tissue-specific CREs in their CRE landscapes. Boxplots represent the fraction of tissue-specific CREs in each gene’s CRE landscapes for each of the ten 
tissues. Tissue-specific genes are defined by an expression relative entropy score > 0.3 (Materials and Methods). The numbers of expressed and tissue-specific 
genes for each tissue are given in table 1. For all boxplots, whiskers extend to 1.5 times the interquartile range. Outliers are not shown.
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landscape (fourth quartile) is 0.18 (supplementary fig. S10, 
Supplementary Material online); the proportion of 
PhastCons overlap increases from 6% to 9% over the 
same interval (supplementary fig. S10, Supplementary 
Material online).

CRE Landscape Size Is Weakly Associated with Variability 
of Gene Expression across Individuals

We next explored whether differences in CRE landscapes of 
expressed genes contribute to the variability in the genes’ 
expression levels across individuals. We integrated the 
CRE landscapes with individual-level gene expression data 
from the Genotype-Tissue Expression (GTEx) project to 
test whether the number of CREs in a gene’s CRE landscape 
is predictive of the variability of gene expression across in
dividuals. Given that the coefficient of expression variation 

is highly correlated with expression level (fig. 4A), we first 
regressed the coefficient of variation on the median expres
sion level, as previously described (fig. 4B and 
supplementary figs. S11 and S12, Supplementary Material
online; Materials and Methods) (Sigalova et al. 2020). We 
use the residuals from this model as a quantification of “ex
pression variation” for comparison with CRE landscape at
tributes (fig. 4C).

The number of CREs in a gene’s landscape is weakly posi
tively correlated with expression variation across individuals 
in nine of ten tissues (average Spearman ρ = −0.03 to 
0.26; fig. 4C and supplementary fig. S13, Supplementary 
Material online). For example, in the spleen, the correlation 
between expression variation and the number of CREs in 
the CRE landscape is 0.12. However, heart and the two 
brain tissues do not exhibit significant correlations (heart: 
ρ = 0.03, hippocampus: ρ = −0.03; prefrontal cortex: 

C D

A B

FIG. 3.—CRE landscapes of housekeeping and LoF intolerant genes are more conserved, but not larger, than other expressed genes. (A) In most tissues, 
housekeeping genes have CRE landscapes of similar size to matched sets of expressed genes (supplementary table S6, Supplementary Material online). 
However, for three tissues (liver, heart, and ovary), the landscape sizes are significantly smaller. (B) The sizes of CRE landscapes for LoF intolerant genes 
are not different than other expressed genes (supplementary table S7, Supplementary Material online). For (A) and (B), the x-axis displays the difference in 
the number of CREs between housekeeping or LoF intolerant genes and a set of matched expressed genes. The number of CREs for the matched expressed 
genes (Exp) is shown on the right. (C and D) Both housekeeping and LoF intolerant genes have a greater proportion of base pairs in their CRE landscapes in 
PhastCons conserved elements compared with a matched set of genes expressed in the same tissue. The pattern is present across seven of ten tissues for 
housekeeping genes and nine of ten tissues for LoF intolerant genes (supplementary tables S6 and S7, Supplementary Material online). The x-axis displays 
the difference in the proportion of PhastCons elements in the CRE landscapes housekeeping or LoF intolerant genes and a set of matched expressed genes. 
The proportion of PhastCons elements for the matched genes is shown on the right.
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ρ = 0.01), suggesting that the size of the CRE landscape does 
not strongly influence gene expression variability across indi
viduals in these tissues. Expression variation weakly negative
ly correlated with DNA sequence conservation in each tissue 
and weakly positively correlated with tissue specificity of 
CREs in eight of ten tissues. However, these correlations 
are even lower in magnitude than for CRE landscape size. 
For example, tissue specificity of CREs in the spleen is not sig
nificantly correlated with expression variation, while the pro
portion of PhastCons elements has a weak negative 
correlation (ρ = −0.04; fig. 4C and supplementary fig. S13 
and tables S9 and S10, Supplementary Material online). As 
expected, tissue specificity of a gene’s expression is strongly 
associated with expression variation across individuals (aver
age Spearman ρ = 0.41–0.61).

eQTL Enrichment Decreases with Increasing CRE 
Landscape Size

Because CRE landscape size correlated only weakly with evo
lutionary constraint and expression variation, we tested for a 
relationship between CRE landscape attributes and 
expression-associated genetic variants. Due to their role 
regulating the expression of genes, we expected CREs to 
be broadly enriched for overlap with eQTL. Indeed, CREs 
were enriched for overlap with eQTL identified by GTEx 
in the same cellular context (supplementary fig. S14, 
Supplementary Material online). However, we also expected 
that the level of enrichment would be influenced by the size 
of the CRE landscape of a gene. We hypothesized that genes 
with large CRE landscapes would be more robust to changes 
in expression driven by genetic variants, due to the greater 
potential for redundancy in larger CRE landscapes.

We observed a significant relative depletion for 
eQTL in landscapes containing more CREs (fig. 5 and 
supplementary fig. S15 and supplementary table S11, 
Supplementary Material online). For example, in the 
spleen, the CREs in the smallest 25% of landscapes are 
3.5× enriched for eQTL overlap compared with 1,000 
sets of random, length-matched regions. In contrast, 
CREs in the largest landscape quartile are only 2.7× en
riched. The relative depletion for eQTL in the largest 
CREs held across tissues. This is consistent with previous 
work that identified a depletion of eQTL targets in genes 
with large regulatory domains (Wang and Goldstein 
2020). In a few tissues (e.g., small intestine), landscapes 
in the second or third quartiles were slightly more enriched 
for eQTL than those in the first. This is likely a technical 
artifact due to the relatively small numbers of CREs in 
these tissues.

Discussion
Variation in gene regulation plays a large role in both the 
etiology of complex human disease and the phenotypic 

A

B

C

Spearman

FIG. 4.—Expression variation across individuals is weakly associated 
with attributes of the CRE landscape. (A) The median gene expression level 
is strongly correlated with coefficient of variation (CV) of expression across 
GTEx individuals. A LOESS regression line is shown over the scatter plot of 
the log of gene expression (x-axis) versus the log of the CV. (B) To adjust for 
the correlation between coefficient of variation and overall expression level, 
we compared the median gene expression level with the “expression vari
ation”—the residuals from the plot in (A). The LOESS regression line is 
shown over a scatter plot of the log of gene expression (x-axis) versus 
the expression variation (y-axis). Data in (A) and (B) are shown for spleen, 
but trends are similar across tissues (supplementary figs. S11 and S12, 
Supplementary Material online). (C) Heatmap of Spearman correlations be
tween expression variation and attributes of the CRE landscape. Positive 
correlations are shown in red, and negative correlations are shown in 
blue. Darker colors indicate a stronger correlation magnitude.
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differences between closely related species. Here, we le
veraged chromatin conformation, functional genomics, 
and evolutionary data to quantify the CRE landscape com
position across ten human tissues and relate landscape at
tributes to gene expression patterns. For example, genes 
with a larger number of linked CREs had higher gene ex
pression values, supporting that, in many cases, regula
tory elements have an additive effect on transcription 
levels. We also found that genes with tissue-specific ex
pression patterns had a higher proportion of tissue- 
specific CREs in their landscapes, and genes under strong 
functional constraint had greater evolutionary conserva
tion in the sequences of their CRE landscapes, regardless 
of landscape size. However, other aspects of gene expres
sion and function, for example, variation across indivi
duals and enrichment for expression-associated genetic 
variation, did not show strong associations with landscape 
properties. Nonetheless, we found that genes with larger 
CRE landscapes have relatively lower enrichments for 
expression-associated genetic variation than those with 
fewer CREs. This suggests that consideration of the CRE 
landscape should inform future work on the interpret
ation of noncoding genetic variants.

Based on previous work (Osterwalder et al. 2018), we 
hypothesized that tissue-specific genes would require a lar
ger number of CREs to maintain appropriate expression 
patterns than broadly expressed genes, especially those 
with housekeeping functions. However, we did not find a 
clear association between tissue specificity and the total 
number of CREs in the landscape. Our results suggest 
that the proportion of the tissue-specific elements is more 

important to expression specificity than the number of ele
ments overall. Similarly, we did not observe a consistent 
trend across tissues for the size of the CRE landscape for 
housekeeping or LoF intolerant genes versus other ex
pressed genes. This contrasts with the consistently lower 
CRE number for housekeeping genes compared with devel
opmental heart, brain, and limb TFs in mouse (Osterwalder 
et al. 2018). However, a direct comparison is challenging gi
ven that this previous analysis used several different techni
ques. First, CREs were mapped to genes based on 
correlated activity patterns. Thus, the power to link CREs 
to genes was dependent on activity levels, and this intro
duces a bias when studying tissue-specific genes. Second, 
the previous analysis did not control for gene expression le
vel. Given the association between overall expression level 
and number of CREs observed here (fig. 2) and in previous 
work (Berthelot et al. 2018), controlling for this relationship 
is essential. Finally, the previous work focused on develop
mental timepoints, so tissue-specific developmental genes 
could have different CRE landscapes than adult tissue- 
specific genes. Overall, our results suggest that there is vari
ability in the size of the CRE landscape required to maintain 
appropriate levels of gene expression across tissues and 
that CRE landscape size is not strongly associated with dos
age sensitivity.

Our results indicate that the size of the human CRE land
scape alone is not a good proxy for functional importance. 
As suggested by previous work on liver CRE evolution 
across mammals (Berthelot et al. 2018), we find that con
sidering other landscape attributes, like evolutionary con
straint and tissue specificity, is essential. Some elements 

FIG. 5.—Larger CRE landscapes are relatively depleted for overlap with eQTL. Across tissues, CREs are enriched for eQTL from GTEx. However, there is a 
relative depletion for eQTL in larger landscapes (top 25%) versus CREs in smaller landscapes (bottom 25%). Enrichment is calculated by comparing the ob
served eQTL overlap to an empirical null distribution generated by random shuffles of length-matched CRE regions (n = 1,000). The fold change is calculated as 
the observed overlap divided by the expected overlap. This trend is replicated in contact-based CRE landscapes (supplementary fig. S15, Supplementary 
Material online).
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of a CRE landscape may modulate expression level while 
others buffer the effects of noncoding genetic variation, 
thus complicating the associations between CRE landscape 
attributes, genetic variants, and expression level. Genes 
that have constraint on their expression levels, such as 
LoF intolerant genes, do have CRE landscapes with consist
ently stronger sequence constraint. However, even still, the 
CRE landscapes of LoF genes vary in CRE size. As previously 
proposed, redundancy in the CRE landscapes of important 
genes certainly occurs, and larger CRE landscapes are de
pleted for eQTL, but not all landscapes with many CREs 
contain redundant elements. Further work is required to 
determine the presence of functionally redundant CREs 
and their attributes.

Quantifying the relationships between the composition 
of the CRE landscape and gene expression patterns will 
help fill gaps in our understanding of how genetic variation 
influences gene regulatory architecture and how this med
iates relationships with phenotypic outcomes (Krijger and 
de Laat 2016). We propose a simple model that synthesizes 
our results on the relationship between CRE landscapes and 
genomic and functional attributes and provides a founda
tion for guiding future work. Our model positions CRE land
scapes along two main axes of variation: the number of 
CREs and their evolutionary conservation (fig. 6).

A large CRE landscape can enable high expression 
levels and create CRE redundancy that can prevent genetic 
variation from altering expression levels. This can reduce 
constraint on some CREs, allowing for evolutionary innov
ation while still maintaining expression levels (fig. 6A). For ex
ample, caspase-8 (CASP8) is a caspase involved in apoptosis 
and present across a wide range of species (Sakamaki et al. 
2014) but has only moderate depletion for LoF variants 
(gnomAD o/e = 0.51). CASP8 is expressed in nearly all 
GTEx tissues except the brain, and its strongest expression 
is in the spleen. The CRE landscape of CASP8 in the spleen 
is large with 16 linked CREs, nearly half of which are tissue 
specific. However, none of the CREs overlaps a conserved 
element. The tissue-specific CREs likely contribute to its 
strong expression in the spleen compared with other tissues. 
The large numbers of CREs likely provide expression stability 
that, paired with the lack of strong constraint on the gene, 
may result in the absence of sequence conservation. 
Alternatively, large CRE landscapes can fine-tune expression 
levels in a way that is not possible with simpler architectures 
and, when the gene is under strong constraint, result in 
many conserved CREs (fig. 6B). AT-rich interaction domain 
5B (ARID5B) is a DNA-binding protein that encodes a compo
nent of the H3K9Me2 demethylase complex in the liver that 
is involved in chromatin remodeling, adipogenesis, and hem
atopoiesis. ARID5B is expressed in all GTEx tissues but has 
substantially different expression levels between tissues. 
Genetic variation in the gene has been linked to acute 
lymphoblastic leukemia (ALL) (Baba et al. 2011; Xu et al. 

2020; Whitson et al. 2021), and in pediatric patients with 
ALL, downregulation of ARID5B was associated with relapse 
and drug resistance, although the exact biological mechan
isms remain unknown (Xu et al. 2020). Given its importance, 
ARID5B is LoF intolerant (gnomAD o/e = 0.02). The CRE land
scape of ARID5B in the liver has 40 linked CREs and a high le
vel of overlap with PhastCons conserved elements. We 
hypothesize that constraint on the regulation of this gene re
sults in its large size and conservation, while the nonconserved 
but broadly active CREs associated with this gene could con
tribute to robustness in its overall expression across tissues.

Small CRE landscapes suggest that the genes require 
relatively simple regulatory control. For example, PPP2CA 
is a housekeeping gene that codes for part of the protein 
phosphatase 2A enzyme, which is involved in regulation 
of cell cycle and division (Janssens and Goris 2001). It is ex
pressed highly in all GTEx tissues and is LoF intolerant 
(gnomAD o/e = 0.06). Consistent with the trends observed 
for housekeeping genes, PPP2CA has a small CRE land
scape (e.g., 3 CREs in liver), and this landscape is under se
quence constraint (fig. 6D). In contrast, the gene von 
Willebrand factor A domain containing 5A (VWA5A) has 
no clear annotated function. It has low tissue specificity 
across GTEx tissues and is lowly expressed in the heart, 
where it has a CRE landscape composed of 1 CRE (fig. 
6C). VWA5A is LoF tolerant (gnomAD o/e = 1.13), and its 
CRE is not under sequence constraint. Thus, it appears 
that this gene’s landscape is not strongly constrained.

Although these examples illustrate the trends we ob
serve, we emphasize that quantifying either the number 
of CREs or their conservation alone is not sufficient to 
understand the CRE landscape of a gene. Indeed, through
out this work, we did not observe a simple relationship be
tween the constraints on gene expression and any single 
CRE landscape attribute. We also find that the tissue speci
ficity of the CREs is an additional dimension that is often 
useful to quantify, as well as aspects of the gene itself.

While our analyses provide a framework for studying 
CREs in the context of the broader CRE landscape of a 
gene, the results have several limitations that must be con
sidered. First, we have incomplete knowledge of active 
CREs in complex biological contexts, and there is variation 
in the quality of data from different contexts. In our previ
ous work, we found that most methods for identifying 
CREs are similarly enriched for variants identified in gen
ome-wide association studies, eQTL, and  sequences vali
dated by massively parallel reporter assays in multiple 
biological contexts, although we are still likely missing rele
vant functional CREs in each context (Benton et al. 2019). 
We also believe that it will be valuable to study variation 
in the activity of CREs across individuals as more data be
come available.

We focus on a histone modification–derived approach to 
identify CREs, which provides greater sensitivity at the 

Cis-regulatory Landscape Size, Constraint, and Tissue Specificity Associate with Gene Function and Expression                 GBE

Genome Biol. Evol. 15(7) https://doi.org/10.1093/gbe/evad126 Advance Access publication 6 July 2023                                            9

https://doi.org/10.1093/gbe/evad126


chr11:

CREs

50 kb hg19

123,990,000 124,000,000 124,010,000 124,020,000 124,030,000 124,040,000 124,050,000 124,060,000 124,070,000 124,080,000

VWA5A OR10D3

Conserved Elements

OR10D3

chr10:

CREs

200 kb hg19

63,500,000 63,550,000 63,600,000 63,650,000 63,700,000 63,750,000 63,800,000 63,850,000 63,900,000 63,950,000 64,000,000

CABCOCO1 ARID5B RTKN2

Conserved Elements

CABCOCO1 RTKN2

chr2:

CREs

100 kb hg19

202,000,000 202,050,000 202,100,000 202,150,000 202,200,000 202,250,000 202,300,000

CFLAR
CASP10

CASP8
FLACC1

TRAK2
STRADB

Conserved Elements

CFLAR
CASP10 FLACC1

TRAK2
STRADB

chr5:

CREs

100 kb hg19

133,500,000 133,550,000 133,600,000 133,650,000

TCF7
SKP1

ENSG00000272772

PPP2CA CDKL3

Conserved Elements

ENSG00000272772

TCF7
SKP1

CDKL3

A

B

C

D

# 
C

R
E

s

% Conserved CREs

BA

C Dsimple control, 
CRE conservation

simple control, 
CRE turnover

complex control, 
CRE conservation

complex control, 
CRE turnover

expression

gene-level constraint

eQTL

housekeeping genes

FIG. 6.—CRE landscapes should be characterized in multiple dimensions to understand their function. The x-axis represents an increasing level of evo
lutionary conservation on the CREs in a landscape (top panel; left to right). The y-axis represents an increasing number of CREs (bottom to top). Genes exist 
at different locations within this space, and these attributes are related to the genes’ expression patterns, levels, and robustness to variation. Larger CRE land
scapes are associated with increased gene expression, but a relative depletion for eQTL, suggesting the potential for gene regulatory buffering. Highly con
served CRE landscapes are associated with stronger gene-level constraint, such as LoF intolerance. Each schematic represents a gene with a CRE landscape 
along these two continua. Examples of real CRE landscapes in each quadrant are shown in (A)–(D). (A) shows the CRE landscape for CASP8 in the spleen; there 
are 16 CREs and none overlap conserved elements. (B) shows the CRE landscape for ARID5B in the liver; 34 of the 40 CREs overlap with conserved elements. 
(C) shows the CRE landscape for VWA5A in the heart; its 1 associated CRE does not overlap a conserved element. (D) shows the CRE landscape for PPP2CA in 
the liver; two of the three CREs overlap a conserved element. We note that CREs may participate in multiple genes’ landscapes, although our examples high
light one-to-one mappings. The boundaries of predicted chromatin loops defining the CRE landscapes are shown as black bars. CREs overlapping PhastCons 
conserved elements are shown in red, while those without overlap are shown in blue. Only the canonical transcript of the gene is shown; nearby genes and 
CRE landscapes are shown at a lower alpha level. These examples are labeled with additional functional annotations in supplementary figure S20, 
Supplementary Material online.
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expense of specificity. To evaluate the robustness of our 
main conclusions, we also considered CREs defined by 
ChromHMM, a machine-learning approach that integrates 
additional functional genomics markers in its predictions. 
Our main results on expression levels, tissue specificity, 
and robustness to variation are similar with ChromHMM 
CREs, suggesting that our conclusions are robust to differ
ent strategies for capturing gene regulatory activity 
(supplementary figs. S17–S19, supplementary tables S14– 
S16, Supplementary Material online). Second, we rely on 
predicted chromatin loops derived from Hi-C to assign pu
tative CREs to their target genes. These loops are less sus
ceptible to bias caused by differences in Hi-C read depth 
across tissues than contact-based approaches (Salameh 
et al. 2020) but are also less granular than using individual 
chromatin interactions. Thus, the resolution of current data 
precludes us from disentangling the precise gene target of 
some CREs. Alternatively, the contact-based landscape def
inition uses individual Hi-C interactions to highlight more 
precise CRE–gene contacts. However, Hi-C experiments 
with lower read depth discover fewer robust interactions; 
thus, those tissues have a small proportion of significant 
CRE to gene associations. We found that the variation in 
observed patterns across tissues for contact-based land
scapes is frequently correlated with the number of signifi
cant Hi-C interactions, suggesting that these differences 
are likely to reflect technical, rather than biological, differ
ences. Improved data quality could increase our power to 
detect generalizable trends in the future. Recent ap
proaches, such as the ABC model (Fulco et al. 2019), pro
vide another approach for linking CREs to target genes 
but require additional experimental data and highlight simi
lar CRE–gene links. As Hi-C and other genomic technolo
gies continue to advance, we anticipate that higher 
resolution data sets will become available for a wide range 
of tissues to refine our current results. Our definitions of 
CRE landscapes are easily extensible to include future high- 
resolution data sets across biological contexts.

Ultimately, we highlight how differences in gene function, 
expression, and evolutionary constraint are reflected in the 
features of CRE landscapes. Our results illustrate that quanti
fying the CRE landscape of a gene will likely be necessary to 
understand its expression dynamics across contexts. In the 
future, we anticipate that quantifying the effects of CRE alter
ation in the context of our CRE landscape framework will 
facilitate interpretations of the effects of gene regulatory 
perturbations to phenotypic variability and disease risk.

Materials and Methods
All analyses were conducted using the GRCh37/hg19 build 
of the human genome. We used gene and TSS definitions 
from Ensembl v75 (GRCh37.p13). Analysis scripts were 
written in Python (v3.6.7) and R (v.4.0.5).

CRE Annotations and Chromatin Interaction Data

We downloaded normalized, 40-kb resolution Hi-C inter
action frequency matrices from human samples for ten tis
sues: brain (prefrontal cortex, hippocampus), heart (left 
ventricle), liver, lung, ovary, pancreas, psoas muscle, spleen, 
and small intestine (Schmitt et al. 2016). The matrices were 
normalized using FitHiC (Ay et al. 2014). The locations of 
topologically associating domain (TAD) regions were de
rived from the same Hi-C interaction data by the 3D 
Genome Browser using the approach described in Dixon 
et al. (2012). We downloaded predicted chromatin loop an
chors for each tissue from Peakachu (Salameh et al. 2020).

For each the ten tissues with Hi-C data, we also down
loaded H3K27ac and H3K4me3 ChIP-seq peaks from the 
Roadmap Epigenomics Consortium (Roadmap Epigenomics 
Consortium et al. 2015). H3K27ac peaks were called as 
CREs if the peak was present and overlapped by <50% of 
its length with an H3K4me3 peak (Villar et al. 2015). We 
excluded H3K4me3 peaks because these are considered 
markers of promoters. We filtered putative CREs to remove 
any overlapping an ENCODE blacklist regions (Amemiya 
et al. 2019) and those in the top fifth percentile of length 
(>1.3 kb). The filtering process has little effect on the 
number of linked CREs and genes in the final analysis 
(supplementary table S13, Supplementary Material online). 
To evaluate the robustness of our results to CRE definition, 
we also downloaded enhancer annotations predicted by 
the ChromHMM 15-state model (“Enh”: state 7) (Ernst 
and Kellis 2012; Roadmap Epigenomics Consortium et al. 
2015).

Definition of Genome-Wide CRE Landscapes

We considered both loop-based and contact-based ap
proaches to defining a gene’s CRE landscape for each tis
sue. The loop-based CRE landscape considers chromatin 
loops—the genomic regions between loop anchors pre
dicted by the Peakachu model. Within each loop region, 
we associated the CREs with the TSSs within the same 
loop. For each gene, the CRE landscape is the union of all 
CREs associated with the canonical TSS in a loop region. 
We excluded any loops that are comprised of >5% 
ENCODE blacklist regions due to the difficult of mapping 
putative CREs in those loops.

We also defined contact-based CRE landscapes from evi
dence of direct chromatin interactions. For each gene, the 
landscape is based on the combination of CRE, gene, and 
Hi-C annotations. We considered CREs with evidence of a 
significant interaction from the Hi-C data (q < 0.05, i.e., 
the P value of the Hi-C interaction adjusted to a false discov
ery rate of 5%). The significance of a Hi-C interaction was 
determined by comparing the frequency of the observed 
interaction with an empirical null model adjusted for 
known technical biases. CREs that overlap the anchor of a 
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significant Hi-C interaction (q < 0.05) are assigned to land
scapes of genes with a TSS inside the other anchor. Where 
there are multiple CREs or TSSs within a single anchor, all 
CREs are linked to all potential gene targets. To account 
for the known role of TADs in constraining regulatory inter
actions, we limit the CRE–gene assignment to intra-TAD 
interactions.

We downloaded CRE to gene links defined using the 
ABC model for six cell types with matching loop- and 
contact-based CRE landscapes (liver, heart, muscle, ovary, 
spleen, and pancreas) (Fulco et al. 2019). We intersected 
the CREs from these files with our CRE definitions to iden
tify linked genes using the ABC model. We quantified the 
similarity between the sets of genes linked to the same 
CRE using a relative Jaccard similarity metric.

Calculating Tissue Specificity of Gene Expression

We downloaded RNA-seq gene expression data from 
Genotype-Tissue Expression (GTEx, version 8) in transcripts 
per million (TPM) for ten tissues with matching Hi-C data: pre
frontal cortex, hippocampus, heart, liver, lung, ovary, pan
creas, skeletal muscle, spleen, and small intestine (Schmitt 
et al. 2016; GTEx Consortium et al. 2017). We consider ex
pressed genes as those with a TPM > 1 (Uhlén et al. 2015). 
We calculated the tissue specificity of expression using the 
relative entropy of each gene’s normalized expression profile 
across tissues compared to the median gene expression distri
bution across tissues in the sample. We scaled the resulting 
value between 0 and 1, where genes closer to 0 are broadly 
expressed and genes closer to 1 are tissue specific. We consid
ered a second tissue specificity metric, τ (Yanai et al. 
2005; Ravasi et al. 2010), although tissue-specific genes clas
sified using this score produced similar results to the relative 
entropy approach. Using the τ metric the distribution was 
skewed towards tissue specificity (supplementary fig. S16, 
Supplementary Material online). We defined the final set of 
“tissue-specific” genes using a threshold on the relative 
entropy score. We tested multiple cutoffs at varying levels 
of stringency (supplementary table S12, Supplementary 
Material online) and selected a cutoff of 0.3 for use in the 
main text, which classifies approximately 10% of linked genes 
as tissue specific.

Calculating Tissue Specificity of CREs

We calculated the tissue specificity of CREs using by using 
the entropy score scaled between 0 and 1. However, be
cause CREs do not have consistent lengths or locations 
across tissues, we standardized the CRE lengths before cal
culating the number of tissues where each CRE was active. 
We tested three possible standard lengths: 1) the median 
CRE length across tissues with lower quality ChIP-seq 
data (220 bp), 2) the median CRE length in our data set 
in the liver (460 bp; no ChIP-seq quality flags), and 3) the 

median CRE length for the histone-modification-defined li
ver CREs from Villar et al. (2.5 kb; same CRE definition 
(Villar et al. 2015). We centered the standardized CRE on 
the midpoint of the existing annotation and either ex
panded or truncated each region to the desired length. 
We selected the most conservative standard length of 
220 bp for our final entropy calculations; the scores for 
the other two were correlated with our chosen threshold 
(ρ = 0.82 for 460 bp, ρ = 0.53 for 2.5 kb). We then calcu
lated the overlap between standardized CREs across all tis
sues to determine the number of tissues where each CRE 
had activity. We calculated the entropy using this number 
of active tissues and assigned the result back to the original 
CRE element. The entropy was scaled to create a score be
tween 0 and 1, with low scores indicating broad activity and 
high scores indicating tissue-specific activity.

Defining Gene Sets With Strong Functional Constraint

We considered two gene sets with higher levels of con
straint on their function (and likely their expression) than 
expressed genes overall: housekeeping genes and LoF in
tolerant genes. We considered housekeeping genes identi
fied in an earlier study based on consistent gene expression 
levels in RNA-seq data across sixteen tissues (n = 3,804) 
(Eisenberg and Levanon 2013). We downloaded a set of 
likely LoF intolerant genes from gnomAD (v2; n = 2,971) 
(Karczewski et al. 2020). Following gnomAD guidance, 
we defined LoF intolerant genes as those with a 90% con
fidence interval upper bound of the observed/expected (o/ 
e) metric less than 0.35. Lower o/e scores indicate greater 
intolerance to protein variants.

Quantifying Evolutionary Constraint on CRE Sequences

We used two complementary approaches to define the le
vel of DNA sequence conservation and constraint on CREs. 
First, we considered conserved elements from vertebrates 
and primates defined by the two-state hidden Markov 
model, PhastCons (Siepel et al. 2005). We merged the 
two sets of PhastCons conserved elements using Bedtools 
mergeBed (Quinlan and Hall 2010), and then calculated 
the proportion of each CRE that overlaps one of these ele
ments. Second, we overlapped each CRE region with 
base-pair-level LINSIGHT scores, which estimate the prob
ability of negative selection on noncoding sequence 
(Huang et al. 2017). We average the LINSIGHT scores across 
each CRE to calculate a final score for the element.

Matching Gene Sets on Expression Level

Due to differences in the distribution of gene expression le
vels across gene functional categories, we used the MatchIt 
library in R to generate matched sets of control genes for 
housekeeping, LoF intolerant, and tissue-specific genes 
(Ho et al. 2011). For each gene category, we matched a 
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set of control genes on gene expression level using the cali
per option (0.1). To generate the maximum possible control 
set, we allowed for up to two matches per gene for house
keeping and LoF intolerant genes, and up to 10 matches for 
tissue-specific genes.

Quantification of Expression Variation Across Individuals

We downloaded full gene expression matrices from GTEx 
(v8) for all ten tissues: prefrontal cortex, hippocampus, 
heart, liver, lung, ovary, pancreas, skeletal muscle, spleen, 
and small intestine (GTEx Consortium et al. 2017). Using 
the sample metadata to match subjects with their expres
sion data, we log-transformed the expression values in 
the individual-by-gene matrix and filtered out samples 
with low expression (TPM < 1). Genes were required to 
meet the expression threshold in at least 80% of indivi
duals. We then quantified the coefficient of variation (CV) 
for the expression of each gene across individuals, which 
is calculated as the standard deviation divided by the 
mean. Following previous approaches to account for the 
strong relationship between expression level and the coef
ficient of variation, we also calculated a final measure of in
dividual “expression variability” as the residuals from a 
locally weighted (LOESS) regression of median gene expres
sion on the CV (Sigalova et al. 2020).

Enrichment for GTEx eQTL in Different CRE Landscapes

We downloaded eQTL from GTEx (v8) for all ten tissues (P <  
1E-5) (GTEx Consortium et al. 2017). The variant sets were 
mapped from hg38 to hg19 using LiftOver to match the 
rest of our annotations (Fujita et al. 2011). We calculated 
whether CREs were enriched for overlap with eQTL using 
a permutation-based approach. Briefly, we calculated the 
amount of overlap between the CREs and eQTL in each tis
sue using BedTools (Quinlan and Hall 2010), then randomly 
shuffled the CRE regions throughout the genome and re
calculated the amount of overlap with this random set of 
regions. We performed the random shuffling process 
1,000 times, maintaining the original number and length 
distribution of the CREs, avoiding ENCODE blacklist re
gions. For the loop-based landscapes, we also required 
the shuffled regions to fall within a predicted chromatin 
loop. Finally, we calculated an empirical P value for our ob
served overlap compared with this null distribution.

In addition, for each tissue and landscape definition, we 
separated the CRE landscapes into quartiles based on the 
number of CREs in each landscape. We used the same per
mutation framework to determine whether the CREs in dif
ferent CRE landscape quartiles are enriched for overlap 
with eQTL compared with genomic background. We com
pared the level of enrichment between the top 25% and 
bottom 25% using a Mann–Whitney U test.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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