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Alternative splicing contributes to adaptation and divergence in many
species. However, it has not been possible to directly compare splicing
between modern and archaic hominins. Here, we unmask the recent

evolution of this previously unobservable regulatory mechanism by applying
SpliceAl, amachine-learning algorithm that identifies splice-altering variants
(SAVs), to high-coverage genomes from three Neanderthals and a Denisovan.

We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific
and 3,607 also occur in modern humans via introgression (244) or shared
ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute
to traits potentially relevant to hominin phenotypic divergence, such as

the epidermis, respiration and spinal rigidity. Compared to shared SAVs,
archaic-specific SAVs occur in sites under weaker selection and are more
common in genes with tissue-specific expression. Further underscoring the
importance of negative selection on SAVs, Neanderthal lineages with low
effective population sizes are enriched for SAVs compared to Denisovan

and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans
were shared across the three Neanderthals, suggesting that older SAVs were
more tolerated in human genomes. Our results reveal the splicing landscape
of archaic hominins and identify potential contributions of splicing to
phenotypic differences among hominins.

While the palaeontological and archaeological records provide evi-
dence about some phenotypes of extinct hominins, most ancient
tissues have not survived to the present. The discovery and success-
ful sequencing of DNA genome-wide from a Denisovan' and multiple
Neanderthal genomes”* enabled direct comparisons of the genotypes
ofthese archaichominins to one another and to anatomically modern
humans. These dataalso enable the potential for indirect phenotypic
comparisons by predicting archaic phenotypes from their genomes®.
Diverse molecular mechanisms collectively shape the similarities and
differences between archaichominins and modern humans. Given that
the biology linking genotype to organism-level phenotype is complex

and that the mapping may not generalize across human populations®,
predicting ‘low-level’ molecular phenotypes from genetic informa-
tionisapromising alternative. Recent work has successfully explored
such differencesin protein-coding sequence’ and differences relevant
to gene expression, such as divergent gene regulation®, differential
methylation’ and divergent three-dimensional genome contacts™.
Variationingenesplicing could also underlie phenotypic differences
between archaic hominins and modern humans but archaic splicing
patterns have not been comprehensively quantified. Alternative splic-
ing enables the production of multiple protein isoforms from a single
gene' ™, Theresulting proteomic diversity is essential for many processes,
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Fig.1| Theidentification, distribution and origin of archaic SAVs. a, We used
SpliceAl to identify putative SAVs in archaic hominin genomes. We analysed
autosomal single nucleotide variants (SNVs) from four archaic hominins
compared to the reference sequence (hgl9/GRCh37). SpliceAl annotates each
variant with splice altering probabilities (SAPs) (4 scores) and position changes
for each class of splicing alteration: (1) acceptor gain, (2) acceptor loss, (3) donor
gainor (4) donor loss. Here, we visualize one example consequence per splicing
class alteration. See Extended Data Fig. 7 for all possibilities. Red asterisks

and arrows indicate the variant position. Filled and dashed red boxes indicate
sequence gained and lost in the predicted transcript, respectively. Ref, reference
sequence; Alt, reference sequence with alternate allele. b, The distribution of the
presence of archaic SAVs across archaic individuals. The dot matrix indicates the
number of SAVs per lineage(s). ¢, The evolutionary origins of the archaic SAVs.
From the distribution of SAVs across archaic and modernindividuals, we inferred
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their origins using parsimony. We also identified introgressed archaic SAVs using
two Neanderthal ancestry sets: ref. 47 (shown here) and ref. 48. The divergence
times and placement of the introgression arrow reflect estimates fromref. 4

and ref. 46. The tip of the archaic hominin branches end at the estimated age of
the fossil that yielded the ancient genome. We display data using 4 > 0.2 here

and these patterns are maintained when 4 > 0.5.d, We consider three main
categories of archaic SAVs based on their origin and presence across populations:
‘ancient’, archaic SAVs present in both modern and archaic hominin individuals
and inferred to have origins before the last common ancestor of these groups;
‘archaic-specific’, archaic SAVs that are present in archaic hominins but absent

or presentat low frequency (allele frequency <0.0001) in modern humans; and
‘introgressed’, archaic SAVs that were introgressed into Eurasian populations due
toarchaicadmixture.

including development and establishing tissue identity™. Defects insplic-
ing underlie many human diseases (for example, refs. 15-22) and varia-
tionin splicing contributes to differences in traits in non-human species
(see Tablelinref.23). Further, alternative splicing can evolve rapidly and
respond to environmental factors—suggesting that it often contributes
to adaptation®* and species differences® %,

Splicing patterns are directly influenced by the nucleotide
sequences surrounding splice sites”. This has enabled the develop-
ment of many algorithms to predict alternative splicing from RNA
sequencing (RNA-seq)*** or DNA sequence® . Beyond human clinical
applications, methods that require only DNA sequence can be lever-
aged to understand alternative splicing in extant species for which
acquiring RNA-seq data may be difficult to impossible, or in extinct
taxa, such as archaic hominins.

Here, weresurrect the genome-wide alternative splicinglandscape
of archaic hominins using SpliceAl, an algorithm that predicts splic-
ing patterns from sequence alone™. First, we assess the distribution
of splice-altering variants (SAVs) among all four archaic individuals,

identify which genes are affected and describe how the transcripts are
modified. Second, we quantify which SAVs are also presentinmodern
humans dueto shared ancestry or introgression. Third, we quantify SAV
enrichmentamonggene sets that underlie modern human phenotypes.
Fourth, we estimate the effects of SAVs on the resulting transcript or
protein. Fifth, we explore how selection shaped alternative splicingin
archaics. Sixth, we evaluate the expression and function of archaic SAVs
thatarealso presentin modern humans. Finally, we highlight a handful
of archaic SAVs with potential evolutionary significance.

Results

We examined the alternative splicing landscape in archaic hominins
using all four currently available high-coverage archaic genomes, repre-
senting three Neanderthals®>*and aDenisovan'. We applied the SpliceAl
classifier to sites with high-quality genotype calls where at least one
archaicindividual exhibited at least one allele different from the human
reference (hgl9/GRCh37) using the built-in GENCODE, Human Release
24, annotations to identify variants in gene bodies (Fig. 1a). SpliceAl
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estimates 4, the splice-altering probability (SAP), for each variant of: (1)
anacceptor gain, (2) an acceptor loss, (3) adonor gain and (4) adonor
loss (Fig.1a). SpliceAl also indicates the positions changed for each of
these four effects in base pairs (bp).

Alternative splicing occurs across nearly all eukaryotes and its
molecular mechanisms are deeply conserved™, We therefore anticipated
that the sequence patternslearned by SpliceAlinhumans would general-
izetoarchaics. To confirmthis, we searched the 147 genes associated with
the major spliceosome complex™ for ‘archaic-specific’ variants, that is,
archaic variants absent or at very low allele frequency (<0.0001) from
individuals sequenced by the 1000 Genomes Project (1IKG)** and the
Genome Aggregation Database (gnomAD)* (Supplementary Datal). We
annotated these variants using the Ensembl Variant Effect Predictor*>.
We found only two missense variants that were scored as likely to disrupt
protein functionbyboth PolyPhen and SIFT, neither of which were fixedin
allfourarchaics (Supplementary Datal). We observed a similar number
of predicted deleterious variantsin random sets of four diverse modern
humans (0-3). Thus, thereis near-complete conservation of the proteins
involved insplicing between archaic hominins and modern humans.

Thousands of SAVs are present in archaic hominins

We identified 1,567,894 autosomal positions with >1 non-reference
alleleamongthe archaicindividuals (Supplementary Table 1). Many of
these positions fell within a single GENCODE annotation; however, a
handful were presentin multiple annotated products (Supplementary
Table 2). Anindividual variant that overlaps multiple annotations may
have differential splicing effects on the different transcripts. Hereafter,
we define a‘variant’ as one non-reference allele for a single annotated
transcript ata given genomic position.

Among these variants, 1,049 had high SAP (SpliceAl 4 > 0.5) out of
1,607,350 archaic variants we analysed. A total of 5,950 archaic variants
had moderate SAP (4 > 0.2). Hereafter, we refer to these variants as
high-confidence SAVs and SAVs, respectively; to maximize sensitivity,
we focus on the SAVs in the main text.

The number of SAVs was similar among the four archaics,
ranging from 3,482 (Chagyrskaya) to 3,705 (Altai) (Supplementary
Table 3). These values fell within the range of SAVs observed in indi-
vidual modern humans, estimated from one randomly sampled indi-
vidual per 1KG population (Supplementary Table 4). SAVs were most
commonly shared among all four archaic individuals (Fig. 1b and
Supplementary Fig.1). Asexpected from the known phylogeny, the Den-
isovan exhibited the most unique SAVs, followed by all Neanderthals
and eachindividual Neanderthal (Fig. 1b and Supplementary Fig.1).

Atotal of 4,242 genes have at least one archaic SAV. A total of 3,111
genes have only one SAV; however, 1,131 had multiple SAVs (Supplemen-
tary Table 5). Among the genes with the largest number of archaic SAVs
are: WWOX (n=9), which is involved in bone growth development®,
HLA-DPAI (n=7) and HLA-DPBI (n =10), essential components of the
immune system**; and CNTNAP2 (n=11), which encodes a nervous
system protein associated with neurodevelopmental disorders and is
also one of the longest genes in the human genome*.

Many SAVs (47.8%) have a high SAP for only one of the four classes
of splicing change (acceptor gain, acceptor loss, donor gain and donor
loss) (Supplementary Fig. 2) and, as expected, the overall associa-
tion between the probabilities of different change types was negative
(p=-0.34to0 -0.14) for variants with at least one SAP >0 (Supplemen-
tary Fig. 3). Donor gains were the most frequent result of SAVs for both
thresholds (29.5% and 35.1% of variant effects, respectively) (Supple-
mentary Fig.2). While this may reflect the true distribution, we cannot
rule out that the classifier has greater power to recognize donor gains
compared to acceptor gains, acceptor losses and donor losses.

Thirty-seven per cent of archaic SAVs are archaic-specific
Weinferred the origin of archaic variants on the basis of parsimony. We
identified 2,186 (37%) ‘archaic-specific’ SAVs. These archaic SAVs are

absentamong modern humansin 1KG and gnomAD or occuringnomAD
atavery low (<0.0001) allele frequency (Fig. 1c). Such low-frequency
variants are likely to be recurrent mutations identical by state rather
thanidentical by descent.

Theremaining 63% of archaic SAVs are presentin modern humans.
Archaic hominins and modern humans last shared a common ances-
tor ~570-752 thousand years ago (ka) (ref. 46). SAVs present in both
archaic and modern humans may be the result of introgression,
shared ancestry or recurrent mutation. To identify SAVs present in
1KG due to introgression, we used two datasets on archaic introgres-
sion into modern humans***%, While modern human genomes retain
Denisovanand Neanderthal ancestry, most 1KG samples have minimal
(<1%) Denisovan ancestry*”*s, Therefore, we focused on Neanderthal
introgression and classified 244 SAVs identified by ref.47in 239 genes
(Fig. 1d and Supplementary Fig. 4) and 386 SAVs identified by ref. 48
in 361 genes as ‘introgressed’ (Supplementary Fig. 4). Despite only
modest overlap between the two introgression datasets (Supplemen-
tary Fig. 5), we observed qualitatively similar results in downstream
analyses. Hereafter, we present results using the ref. 47 introgressed
variants in the main text and include results using the ref. 48 setin the
Supplementary Information.

Non-introgressed variants present in both archaic and modern
humans probably evolved before our most recent common ancestor.
We refer to these SAVs as ‘ancient’ and we consider the archaic SAVs
with an allele frequency >0.05 in at least two 1KG superpopulations
‘high-confidence ancient’. This decreases the probability of recur-
rent mutation or misclassification of introgressed alleles. Hereafter,
‘ancient’ refers to these high-confidence ancient variants unless other-
wise specified. Weidentified 2,252 such variants on the basis of ref. 47
among 1,896 genes (Fig. 1d and Supplementary Fig. 4) and 2,195 vari-
ants onthebasis of ref. 48 among 1,856 genes (Supplementary Fig. 4).

Archaic-specific SAVs are enriched in genes with diverse
phenotypes

Toidentify the potential phenotypic consequences of archaic-specific
SAVs, we tested for enrichment of functional annotations among genes
with archaic-specific SAVs. Following ref. 10, we considered links
between genes and phenotypes from two sources: the 2019 GWAS
Catalog'’ and the Human Phenotype Ontology (HPO)*°, that capture
annotations based oncommon and rare diseases, respectively. Struc-
tural properties of genes, such as the number of exons, influence the
probability that they have SAVs (Supplementary Table 6 and Supple-
mentary Fig. 6). Toaccount for these different probabilities, we gener-
ated a permutation-based empirical null distribution (Methods) and
used it to estimate enrichment for each phenotype and control the
false-discovery rate (FDR).

Given that we cannot directly observe archaic individuals, func-
tions associated with genes with archaic-specific SAVs are of particular
interest. We found enrichment for many phenotypes among the 1,907
genes with archaic-specific SAVs (Fig. 2 and Supplementary Data 2).
Only two GWAS traits were significantly enriched for these SAVs: blood
metabolite levels and blood metabolite ratios (Fig. 2a). There were
substantially more phenotypes from HPO enriched among genes with
archaic-specific SAVs (Fig. 2b) and these included traits that are known
todifferentiate archaic hominins and modern humans, including skele-
taltraits suchaslumbar hyperlordosis and several cranial features (Sup-
plementary Data 2). At least one significantly enriched trait occurredin
every system across the HPO, except for the endocrine system.

Next, wesought to characterize similarities and differencesamong
the archaic hominin individuals. We assessed phenotype enrichment
among genes that contained shared, Neanderthal-and lineage-specific
SAVs (Supplementary Data 2). We found minimal enrichment among
the106 genes with shared SAVs (Extended Data Fig.1). However, there
was considerable enrichmentacross various systems for Neanderthal-
and lineage-specific SAVs (Extended Data Figs. 2-6). For example, all
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Fig.2|Genes with archaic-specific SAVs are enriched for roles in many
phenotypes. a, Phenotype associations enriched among genes with archaic-
specific SAVs based on annotations from the 2019 GWAS Catalog. Phenotypes are
ordered by increasing enrichment within manually curated systems. Circle size
indicates enrichment magnitude. Enrichment and P values were calculated from
aone-sided permutation test based on an empirical null distribution generated
from 10,000 shuffles of maximum 4 across the entire dataset (Methods). Dotted

and dashed lines represent FDR-corrected Pvalue thresholds at FDR = 0.05 and
0.1, respectively. One example phenotype with a Pvalue less than or equal to the
stricter FDR threshold (0.05) is annotated per system. b, Phenotypes enriched
among genes with archaic-specific SAVs based on annotations from the HPO.
Data were generated and visualized as ina. See Supplementary Data 2 for all
phenotype enrichment results.

Neanderthals were enriched for SAVs in genes underlying skin condi-
tionsincluding abnormal skinblistering and fragile skin (Extended Data
Fig.5). The Denisovan exhibited enrichment for SAVs in genes associ-
ated with many skeletal and skeletal muscle system traits including skull
defects, spinal rigidity, abnormal skeletal muscle fibre size, increased
muscle fibre diameter variation and type 1 muscle fibre predominance
(Extended DataFig. 4). No traits were enriched in multiple different sets
of lineage-specific SAVs at FDR-adjusted significance levels.

Most SAVs result inisoforms that trigger nonsense-mediated
decay oryield altered transcripts and proteins
A SAV canresult in a range of effects on the messenger RNA product,
including havinglittle to noimpact. Therefore, the above analysis cap-
tures the extent of potential phenotypic consequences asinferred using
gene ontologies. Next, we sought to characterize the possible func-
tional effects of archaic SAVs on transcripts using aninsilico approach.
We predicted the effect of each SAV on the resulting transcript
by constructing a canonical transcript using the GENCODE exon

annotations. Next, we generated a new transcript using the variant,
indicated splicing alteration class (for example, acceptor gain) and 4
position for that alteration (Extended DataFig. 7). If multiple alteration
classes passed our SAP threshold, we modelled the class with the larg-
est A. We compared the length and composition of the resulting tran-
scripts and proteins for all but six SAVs with disagreements between the
annotated transcript and genome sequences (Supplementary Data 3).

When considering the most likely effect per SAV, most (60%)
SAVsresultinachange to the transcript or protein sequence (Fig. 3a).
Among these consequential SAVs, the most prevalent effect was a
longer protein that included premature termination codons (PTCs)
(Fig.3a).Many suchisoforms would trigger nonsense-mediated decay
(NMD). Theremaining SAVs resulted in altered transcripts or proteins
that would not induce NMD but may yield a different or differentially
stable protein.

When stratifying SAVs by allele origin, the proportion of these
effects was generally similar for most classes (Fig. 3b). However, ancient
SAVs more frequently resulted in no effect, whereas archaic-specific
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Fig.3|Most SAVsresultinisoforms that trigger NMD or yield altered
transcripts and proteins. a, The number of SAVs that resultin one of seven
effects based on the single, largest splicing effect per SAV. We excluded six
SAVs for which the genomic and transcriptomic annotations did not match.

PTCs, premature termination codons; UTRs, 5’or 3’untranslated regions.
b, The number of protein effects stratified by allele origin®’. Colours indicate
the transcript or protein effectasina.

and introgressed SAVs were more likely to alter the canonical pro-
tein or untranslated regions (UTRs) (G test of independence, G =138,
P=1.73 x107%). This pattern was also observed when variant allele
origin was classified as per ref. 48 (G=121, P=3.45 x10%°) (Supple-
mentary Table 7). We also note that many SAVs are predicted to result
in multiple splicing alteration classes (for example, a donor gain and
adonor loss) and thus, by focusing on a single class per SAV, we may
miss some biologically relevant effects.

Site-level evolutionary conservation varies across SAV origin
Genes vary in their tolerance to mutation and SAVs often disrupt gene
function and contribute to disease**?2. To evaluate if the presence of
archaic SAVs is associated with evolutionary constraint on genes, we
compared the per gene tolerance to missense and loss-of-function
variants from gnomAD* among ancient, archaic-specific, introgressed
and non-splice altered genes. In addition to constraint at the gene
level, evolutionary constraint can be quantified at nucleotide level
by methods like phyloP that quantify deviations from the expected
neutral substitution rate at the site-level between species®. Thus, to
explore the constraint on SAV sites themselves, we also compared their
phyloP scores.

While we found asignificant differencein the observed/expected
number of missense variants per transcript among genes with different
classes of SAV (Kruskal-Wallis, H=18.079, P= 0.0004), the effect size
was minimal (Supplementary Fig. 7a). Furthermore, genes with SAVs of
different origins did not significantly differ in the observed/expected
number of loss-of-function variants per transcript (Kruskal-Wallis,
H=1.533,P=0.675) (Supplementary Fig. 7b). Variants classified as per
ref. 48 exhibited the same pattern (Supplementary Fig. 7c,d). These
results suggest that genes with alternative splicing in archaics are
similarin their gene-level constraint to other genes.

In contrast, phyloP scores were significantly different between
ancient SAVs, archaic-specific SAVs, introgressed SAVs and non-SAVs
(Kruskal-Wallis, H = 877.429, P= 6.963 x 10™°°) (Supplementary Fig. 8a).
All of the variant sets exhibited a wide range of phyloP scores, indi-
cating diverse pressures on SAVs of each type. However, ancient

SAVs and non-SAVs exhibited largely negative phyloP scores,
suggesting substitution rates faster than expected under neutral evo-
lution. In contrast, archaic-specific and introgressed SAVs had higher
median phyloP scores, suggesting that more of these loci experienced
negative constraint. However, 84.3% occurred within the range consist-
ent with neutral evolution (|phyloP| < 1.3). Variants classified as per
ref. 48 exhibited similar patterns (Supplementary Fig. 8b); however,
archaic-specific, rather than introgressed, variants had alarger mean
phyloPscore.

The prevalence of SAVs across lineages is consistent with
purifying selection on most SAVs

Variants that disrupt splicing and/or produce new isoforms are
expected to be under strong negative selection®**>. However, given
differences in ages of archaic SAVs and the effective population sizes
(N.) of the lineages in which they arose, different SAVs were probably
exposed to different strengths of selection for different periods. Thus,
we proposed that the probability a given SAV would survive to the pre-
sent would vary on the basis of its origin. For example, SAVs that arose
inthe ancestor of all archaic lineages were probably subject to purifying
selection over alonger time scale than lineage-specific SAVs, especially
those that arose in lineages with low N..

Shared archaic variants are depleted for SAVs compared to
lineage-specific variants and this depletion increased with higher
SAP thresholds (Fig. 4a,b and Supplementary Table 8). This result is
consistent with the idea that most SAVs are deleterious and that the
longer exposure to negative selection for older variants results in
a smaller fraction of remaining SAVs. It is also concordant with the
site-level constraint results.

Given that the population histories for each archaic lineage were
probably different, we also compared within lineages. Neanderthals
are thought to have lived in smaller groups and exhibited a lower N,
than Denisovans®*. We tested this by repeating the SAV enrichment
test for variants specific to each individual archaic lineage (Fig. 4a).
All three Neanderthals were significantly enriched for unique SAVs
compared to shared archaic variants after Bonferroni correction (odds
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Fig. 4| Lineage-specific archaic variants are enriched for SAVs compared to
shared archaic variants. a, We proposed that lineage-specific archaic variants
(left) would be enriched for SAVs compared to variants shared among the four
archaicindividuals (right), due to less exposure to strong negative selection.

To test this, we computed the OR for being a SAV over all variants unique to
eachlineage (turquoise and blue edges) compared to variants shared among all
fourlineages (dark green edge). We also proposed that lineage-specific archaic
variants would vary in their SAV enrichment compared to shared variants, based
onthe different effective population sizes and lengths of each branch. To test
this, we computed the OR for being a SAV over variants unique to each lineage
individually compared to variants shared among all four lineages. b, Archaic
variants with origins in a specific archaic lineage (n = 618,082) are enriched for
SAVs compared to variants shared among all four archaic lineages (n = 573,197).
The enrichmentincreases at increasing SAP (4) thresholds. Bar height indicates
the OR. Error bars denote the 95% confidence interval and are centred on the OR.
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Asterisks reflect significance of Fisher’s exact tests using a Bonferroni-
corrected a (0.0125). Note that the y axis is log,, transformed. The number of
lineage-specific and shared SAVs/non-SAVs used in each enrichment test are
listed in Supplementary Table 8. ¢, Lineage-specific archaic variants vary in their
enrichment for SAVs. The Neanderthal lineage-specific variants have stronger
SAV enrichment than Denisovan-specific variants. Estimated N, per lineage is
denoted by acircle above each lineage, with increasing size reflecting larger N,.
The N, estimates are from ref. 4. Bar height indicates the OR. Error bars denote the
95% confidence interval and are centred on the OR. Asterisks reflect significance
of Fisher’s exact tests using a Bonferroni-corrected a (0.0125). Note that the
yaxisislog,, transformed. ORs were calculated from 81,916 Altai-specific, 53,765
Chagyrskaya-specific, 411,492 Denisovan-specific, 70,999 Vindija-specific and
573,197 shared variants. The number of lineage-specific and shared SAVs/non-
SAVsused in each enrichment test are listed in Supplementary Table 9.

ratio (OR) =1.205-1.447; Fig. 4cand Supplementary Table 9).In contrast,
variants onthe longer and higher N, Denisovan lineage were not signifi-
cantly enriched for SAVs (OR =1.075). At the stricter high-confidence SAV
threshold, both the Altai and VindijaNeanderthals remained significantly
enriched withiincreased ORs (Supplementary Fig. 9). These results are
consistent with experimental results that found modern humans are
depleted for SAVs with strong splicing effects compared to archaics™.

Introgressed SAVs found in modern humans were present
across archaics

We proposed that the evolutionary history of SAVs might also influ-
ence their prevalence in modern human populations. For example,
introgressed variants experienced strong negative selection in the
generations immediately after interbreeding™, so archaic SAVs that
survived stronger and longer-term selection would be more likely to
surviveinmodern humans. To test this, we first considered the distribu-
tion of remaining introgressed variants among the archaics.

Mostintrogressed SAVs were presentin all Neanderthals (n=143)
or present in all archaics (n = 68; Supplementary Table 10). No
SAVs private to Vindija or Chagyrskaya nor shared between both
late Neanderthals were identified as introgressed, even though
Neanderthal ancestry in most modern humans is most closely
related to Vindija and Chagyrskaya®*. This is consistent with
weaker selection on lineage-specific SAVs and previous work sug-
gesting that older introgressed archaic variants were more tolerated
in humans> ¥,

To further test this, we compared the expected origin distribution
for introgressed SAVs (based on the distribution of archaic-specific
SAVs) to the observed distribution for introgressed SAVs. Fewer
Altai-specific SAVs occur amongintrogressed variants whereas shared
Neanderthal SAVs are more prevalent than expected (Fig. 5a). This
pattern remains for SAVs from ref. 48 and high-confidence SAVs from
both (Supplementary Fig.10). These patterns suggest that older SAVs,
either those that evolved before the Neanderthal common ancestor
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Fig.5|Introgressed SAVs present in modern humans were shared across
archaicindividuals and are associated with increased tissue specificity.

a, Histograms comparing distributions of the presence of all Neanderthal SAVs
(blue) and introgressed SAVs (purple) in different sets of Neanderthal individuals.
Introgressed SAVs are older than expected from all Neanderthal SAVs. We focused
on Neanderthal lineages because of low power to detect introgressed Denisovan
SAVs. All data are presented in Supplementary Table 10. b, Allele frequency
distribution for introgressed SAVs as per ref. 47. Allele frequencies represent

the mean from the 1KG African, American, East Asian, European and South Asian
superpopulation frequencies. ¢, Allele frequency distributions for SAVs present
inboth archaic and modern individuals stratified by 1KG superpopulation and
origin (ancient versus introgressed) as per ref. 47. Ancient SAVs (n = 2,252) are
coloured green and displayed on the left, while introgressed SAVs (n = 237) are
coloured purple and displayed on the right per superpopulation. AFR, African;

Mann-Whitney, U = 35,123.5, P = 0.027
1

9.3%
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20 +

n GTEXx tissues

T
n=>52
Introgressed

T
n=1145
Ancient

Allele origin

AMR, American; EAS, East Asian; EUR, European; and SAS, South Asian. The
coloured dot represents the mean allele frequency for each set. The y axis is
square-root transformed. d, The number of introgressed SAVs with aminimum
allele frequency of atleast 0.01in each modern human population. We display
allindividual populations, the non-African set and Asian/American set here.
See Supplementary Fig. 15 for all sets. e, The distribution of the number of
GTEx tissues in which an ancient or introgressed SAV (as per ref. 47) was identified
asan sQTL. Introgressed variants are significantly more tissue specific.

We defined ‘tissue-specific’ variants as those occurring in one or two tissues
and ‘core’sQTLs as those occurring in >40 of the 49 tissues. The dashed and
dotted lines represent these definitions, respectively. The proportion of SAVs
below and above these thresholds are annotated for each allele origin. In all
panels, introgressed SAVs and frequencies are as defined by ref. 47.

or before the Denisovan and Neanderthal common ancestor were the
most tolerated after introgression.

Consistent with known introgression patterns, introgressed SAVs
occurred at lower overall frequencies (Fig. 5b). However, a few intro-
gressed SAVs occur at modest to high frequencies among genesinclud-
ing GMEB2, GALNT18and TLR1 (Fig.5b). Thelast occursinanadaptively
introgressed locus spanning three toll-like receptors—key components
of the innate immune system*® and this SAV have been confirmed to
generate an isoform using amassively parallel splicing reporter assay™.

In contrast, ancient SAVs occur at high frequencies in all five 1IKG
superpopulations (Supplementary Figs. 11and 12) and their frequen-
cies are significantly higher among Africans (mean (u) = 0.522) than
non-Africans (u = 0.476) (Mann-Whitney U=10,963,956, P=2.66 x 10~°)
(Fig. 5c and Supplementary Fig. 13). Introgressed SAVs have signif-
icantly lower frequencies in all superpopulations (Fig. 5¢) and are

less likely to be shared among multiple populations (Fig. 5d and
Supplementary Figs. 14 and 15).

Itis possible these patterns reflect the general attributes of intro-
gressed variants, rather than splicing effects of SAVs. We therefore
examined the relationship between allele frequency in 1KG and SAP
(4 max) for introgressed SAVs. The 1KG populations did not generally
differin4 max for either ancient orintrogressed SAVs, although intro-
gressed SAVs had a higher 4 max (Supplementary Fig. 16). We antici-
pated, however, that introgressed SAVs predicted to have stronger
effects onsplicing would occur at lower frequencies. Indeed, we found
asignificant negative association between allele frequency and A max
forA4>0.2(Spearman, p =-0.2378, P=0.0002) (Extended Data Fig. 8).
This patternis probably absent among ancient variants due to purifying
selection ondeleterious variants that occurred before the divergence
ofarchaicsand moderns. Further, our prediction that ancient SAVs were
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more likely to have no effect on the resulting transcript and protein
(Fig. 3b) is consistent with this hypothesis.

Introgressed SAVs have immune, skeletal and reproductive
associations

Wetested whetheranyfunctionalannotations (GWAS or HPOterms) were
enriched amongthe361genes withintrogressed SAVs fromref. 48 and
239 genes withintrogressed SAVs fromref. 47 (Supplementary Data2).
Two terms were significantly enriched among genes withintrogressed
SAVs*:adverse response to breast cancer chemotherapy (GWAS) and
oligohydramnios (HPO) (Extended DataFig. 9). Four HPO termsrelated
to hip-girdle, pelvicand shoulder muscles were enriched among genes
with ref. 48 introgressed SAVs (Extended Data Fig. 10b). However, 19
GWAS terms met our FDR-corrected significance threshold including
Helicobacter pyloriserologic status and systemic sclerosis (Extended
Data Fig. 10a). Overall, these results suggest that SAVs surviving
inmodern human populations influence severalimmune, skeletal and
reproductive phenotypes.

We further considered the potential functional effects of intro-
gressed SAVs by intersecting them with Neanderthal variants exhibiting
allele-specific expression (ASE) in modern humans®’. We identified 16
SAVs out of 1,236 ASE variants, including variants in GSDMC, HSPG2
and RARS (Supplementary Table 11). The SAV in HSPG2, predicted to
create a donor gain, was recently validated using a massively parallel
splicing reporter assay>’. We also note that a handful of the ref. 59 ASE
variants fell just under our SAV threshold. Among these is aNeanderthal
variant (rs950169) in ADAMTSL3 that results in a truncated pro-
tein®. SpliceAl correctly predicted the loss of the upstream acceptor
(4=0.19),althoughit did notindicate the downstream acceptor gain.

Introgressed SAVs are more tissue specific than ancient SAVs
Giventheir different histories of selective pressures, we proposed that
introgressed SAVs would be more tissue specific than would ancient
SAVs in their effects. To explore this, we identified 1,381 archaic SAVs
with splicing quantitative trait loci (sQTL) data from the genotype-
tissue expression (GTEX) project across 49 tissues.

Introgressed sQTL SAVs were significantly associated with
tissue-specific gene expression compared to ancient sQTL SAVs
(Mann-Whitney U= 35,123.5, P=0.027) (Fig. 5e). On average, intro-
gressed SAVsinfluenced splicingin 4.92 fewer tissues than did ancient
SAVs. Further, all sQTL SAVs with broad effects (>40 tissues) were
ancient (107 high-confidence and 5 low-confidence). A total of 74 of
these were shared among all four archaics (Supplementary Table 12),
suggesting that core sQTL SAVs were more likely to evolve in the deep
past. These patterns were also observed among the variants fromref. 48
(Supplementary Fig.17). Collectively, 30% of sSQTL SAVs (n = 427) were
associated with tissue-specific effects on splicing (one or two tissues)
(Supplementary Fig.18). Consistent with known gene expression pat-
terns, testis had the most unique sQTL among SAVs, followed by skeletal
muscle and thyroid.

Variationingene expressionamong tissues may also influence the
efficacy of negative selection to remove deleterious SAVs. For example,
ref. 60 demonstrated that more ubiquitously expressed genes in
Paramecium tetraurelia exhibited less alternative splicing compared
to genes with more tissue-specific expression due to the differencesin
theefficacy of negative selection. We predicted that tissue specificity
of expression would be associated with the number of SAVs per gene
or maximum 4. We quantified tissue specificity of expression using
the relative entropy of the transcripts per million (TPM) count for
each gene across tissues compared to the expression distribution
across tissues for all genes in GTEx. This metric ranges from 0 to1,
with higher values reflecting greater tissue specificity. Most genes
exhibited broad expression (Supplementary Fig.19), so we divided
genes into low, medium and high tissue specificity on the basis of the
relative entropy.

Genes with the most tissue-specific expression had significantly
higher median maximum SAP (4) thandid genes with broader expres-
sion patterns (Supplementary Fig. 20a; Kruskal-Wallis H = 6.599,
P=0.037). This could indicate greater selection against SAVs likely
to influence expression across many tissues; however, we note that
the effect was small in magnitude. The distribution of the number of
archaic SAVs per gene did not differ significantly between entropy
classes (Supplementary Fig. 20b; Kruskal-Wallis H=1.89, P=0.388);
allhad amedian of 1 SAV.

Archaic SAVs with potential evolutionary significance

Many archaic SAVs influence genes with known or previously suggested
significance to the evolutionary divergence between archaic homi-
nins and modern humans. For example, the 2'-5’oligoadenylate syn-
thetase OASlocus harbours an adaptively introgressed SAV at Chr.12:
113,357,193 (G>A) that disrupts an acceptor site and results in multiple
isoforms and leads to reduced activity of the antiviral enzyme®**, This
ancestral variant was reintroduced to modern Eurasian populations by
Neanderthalintrogression®. SpliceAl correctly predicted the acceptor
loss at this site (4 = 0.89). This locus harbours 92 additional archaic
variants (n = 92). We found one additional SAV at Chr.12:113,355,275in
0AS1that potentially results in an acceptor gain (4 = 0.26). This allele
was unique to the Denisovan; it is derived and was present in only
one of 2,054 1KG samples as a heterozygote. This suggests potential
further splice variant evolution of this locus, with possible
Denisovan-specific effects.

We also identified several variants at other well-studied
loci. Variation in human populations at the EPASI locus includes a
Denisovan-introgressed haplotype thought to contribute to adapta-
tion toliving at high altitude among Tibetans®*. Of 184 archaic variants
occurring at this locus, we identified two as candidate SAVs. One variant
(Chr. 2: 46,584,859; rs372272284) is homozygous in the Denisovan,
whereas allNeanderthals have the humanreference allele (Fig. 6a). The
variantisintrogressed and present atlow frequencyin East Asians in 1IKG
andisalsothelead variantinanobserved association of theintrogressed
haplotype with decreased haemoglobin levels in Tibetans®. This SAV
strengthens a canonical 5'splice site (CAA|GT to CAG|GT)*, resulting
inadonor gain (4 = 0.37) (Fig. 6a). If used, this splice site would intro-
duce multiple stop codons, resultingin NMD (Supplementary Data 3).
This would result in the same molecular effect (decreased circulating
EPASIRNA) thatis thought to contribute to hypoxia adaptation®. The
other candidate SAV (Chr. 2:46,610,904) is absent from 1KG/gnomAD
and occurs as aheterozygyotein the Altai Neanderthal and is near the
end of the lastintron of the gene, making it much less likely to funda-
mentally alter the mRNA product.

We also identified three archaic SAVs within ERAP2, a gene sub-
ject to strong and consistent balancing selection in different human
populations®’. SpliceAl correctly identified a previously characterized
human variant (Chr. 5: 96,235,896; rs2248374), which causes a donor
loss (A =0.51) and resultsin atruncated protein and subsequent NMD
of the mRNA. However, we identified an additional Neanderthal SAV,
whichisalsointrogressed and occurs atlow frequencies among Ameri-
cans (5%), Europeans (6%) and South Asians (2%) in 1KG (Fig. 6b). This
SAV, 1517486481, is adonor gain (4 = 0.53) that introduces a canonical
5’splice site (AT|GTAAT to ATIGTAAG) and would similarly result in
NMD (Fig. 6b and Supplementary Data 3). However, this allele always
occurs with the non-truncated version of rs2248374 (while being much
rarer) and the need to maintain the non-truncated allele is probably
why it remains uncommon. The third variant (Chr. 5: 96,248,413) was
archaic-specific—occurring as a heterozygote in the Altai Neander-
thal—andresultsinanacceptor gain (4 = 0.24).

Discussion
Alternative splicing plays a critical role in organismal biology,
particularly during development and establishing tissue
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Fig. 6| Example archaic SAVs leading to NMD in loci with evidence of recent
adaptive evolution. a, A Denisovan-specific homozygous SAV resultsin adonor
gainin EPASI, hypoxia-inducible factor-2a, between the fourth and fifth exon. The
transcript resulting from the SAV introduces six PTCs (Supplementary Data 3),
which probably results in the elimination of the transcript via NMD. This SAV
potentially contributes to the effects of the introgressed haplotype in Tibetan
adaptation to living at high altitude. This variant is present as a heterozygote in
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12 individuals from 1KG: 8 from the East Asian superpopulation and 4 from the
South Asian superpopulation. b, Three archaic SAVs, including a Neanderthal-
specific variant, occur in ERAP2, an MHC presentation gene with evidence of
strong balancing selection in human populations. Consistent with this, the SNV
occursatlow frequency in three of the five 1IKG superpopulations. As in the EPAS1
example, this variant results in adonor gain between the eleventh and twelfth
exons, whichintroduces nine PTCs (Supplementary Data 3).

identity". Thus, alternative splicing often contributes to adapta-
tion and phenotypic differences between closely related species™ 5.
The development of machine-learning algorithms that can pre-
dict alternative splicing from sequence alone now enables analy-
sis of alternative splicing in populations for which transcriptomic
data are difficult or impossible to generate, including archaic
hominins. Here, we use SpliceAl to uncover the previously unob-
servable genome-wide alternative splicing landscape of archaic
hominins.

We identify thousands of putative SAVs from the high-coverage
genomes of three Neanderthals and a Denisovan. We find that many
ofthese variants do not occur inmodern humans and we propose that
they areimplicated inspecific phenotypic differences between archaic
hominins and modern humans. Additionally, many SAVs are shared
with modern humans and are ancient, evolving before the common
ancestor of archaic hominins and modern humans. Furthermore, afew
hundred SAVs are present in human populations due to introgression
andthese survivingintrogressed SAVs are almost entirely shared across
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Neanderthals. We also observe multiple lines of evidence supporting
therole of negative selection in shaping SAV patterns.

Given that introgressed and ancient SAVs are present in modern
humans, their splicing patterns have the potential to be directly studied
to further understanding of their phenotypic effects. We found that
36.7% of non-archaic-specific SAVs were identified inmodern humans
inGTEx assQTLs. There are several reasons why archaic SAVs might not
havebeendetected assQTL. Splicingis often tissue specificand GTEx
assayed only a small fraction of tissues and contexts. Furthermore,
splicing is influenced by sequence but is also influenced by other cel-
lular dynamics, such as polymerase pausing®. These, along with limited
statistical power in many GTEX tissues, particularly for SAVs at low
frequency in Europeans, mean that many SAVs should not necessarily
bedetected.Indeed, we observe higher fractions of SAVs as sSQTL when
analysing high-frequency variants (Supplementary Fig. 21). The tissue
specificity of archaic SAVs is of great interest but the degree to which
SAVtissue specificity in modern humansreflects specificity inarchaic
hominins is unknown without further experimental study. However,
such studies are challenging because the genomic and archaic cellular
context cannot be perfectly replicated (that s, testing anarchaic SAVin
aNeanderthal genome background in a Neanderthal tissue)>®,

Our results offer new insight into an essential molecular mecha-
nism and previously unstudied attributes of archaic hominins; how-
ever, we note some limitations of our approach. First, we did notinclude
structural variants (InDels) or variants from the sex chromosomes in
this analysis, both of which warrant further study. For example, the X
chromosome exhibits high levels of alternative splicing®® and splic-
ing can occur in a sex-specific manner®*”°, However, for now, we only
have high-coverage archaic hominin sequences from females. Future
development and application of models with sex-specific transcrip-
tomic data may offer additional phenotypic insights. Second, the tag
single nucleotide polymorphisms (SNPs) and modern human sam-
ples used in this analysis are best suited to identifying Neanderthal
rather than Denisovan introgression**%, Our conservative approach
for identifying introgressed haplotypes means that the number of
introgressed SAVs reported here is an underestimate and does not
include Denisovan-derived SAVs. Multiple modern human popula-
tions contain considerable Denisovan ancestry, therefore, future work
should consider these variants.

In summary, our approach of combining machine learning with
ancient DNA and modern population genetic data identifies thou-
sands of archaic variants that potentially alter splicing, including
many that appear to be specific to archaic hominins. Genes affected
by archaic SAVs are enriched for roles in a variety of phenotypes and
several influence loci with known relevance to recent human evolu-
tion. For example, two archaic SAVs that we highlight probably cause
NMD of the resulting EPASI and ERAP2 transcripts. Downregulation
of EPASIis thought to underlie high-altitude adaptation in Tibetans®®.
In ERAP2, another variant in human populations that induces NMD
has experienced strong balancing selection®’. These examples under-
score that phenotypic effects fromalternative splicing are not limited
to expanded proteomic diversity but also downregulation of gene
expression via NMD”"’% Further work is needed to understand the
functional effects of these and other archaic SAVs. Others> recently
used a massively parallel splicing reporter assay to assess exonic SAVs
in archaics and modern humans, validating several predictions from
the present study. However, this assay is limited to testing only a sub-
set of exonic variants and additional assays are required to test the
other types of exonic and any intronic SAVs™. Nonetheless, our results
suggest that alternative splicing played a role in hominin divergence
and offers specific molecular hypotheses for testing. The identifica-
tion of archaic-specific splice variants here will enable future anal-
ysis of human-specific splice variants. We also anticipate that our
sequence-based approach will enable study of alternative splicing in
other extinct or difficult to sample taxa.

Methods

Archaic genomic data

We retrieved four high-coverage publicly available archaic hominin
genomes representing three Neanderthals®* and a Denisovan'.

We excluded sites that were invariant among the archaic indi-
viduals (ALT=.) and variants with low site quality (QUAL < 30). Further,
low-quality genotypes were set to missing on the basis of read depth
(FMT/DP<10) and genotype quality (FMT/GQ <30). We also normalized
InDels and split multi-allelic records into separate entries for positions
with multiple variants (norm -m -). All filtering was completed using
bcftools, v.1.13 (ref. 73).

Allgenomic coordinates presented in this article and Supplemen-
tary Information refer to hg19/GRCh37.

Variant annotation

We annotated variants for putative alternative splicing using SpliceAl
v.1.3.1 (ref. 35). Briefly, SpliceAl uses a deep residual neural network
to estimate the SAP and position change of each variant from DNA
sequence alone makingitideal for studying archaichominins, for which
we cannot obtain transcript-level data. The model considers 5 kilobase
pairs flanking the variantin both directions. The outputincludes four
SAPs (4s) for (1) acceptor gain (AG), (2) acceptor loss (AL), (3) donor gain
(DG) and (4) donor loss (DL) as well as the position changes for each of
the four deltas. The As range from O to 1and represent the likelihood
avariant is splice-altering for one or more of the four categories. We
implemented SpliceAl in a Conda package using keras v.2.3.1 (ref. 74)
and tensorflowv.1.15.0 (ref. 75). After filtering, we ran SpliceAl on sets of
5x10*variants using the hg19 reference genome using the GENCODE,
Human Release 24, annotations’ included with the package. We used
the default parameter for maximum distance between a variant and
gained/lost splice site (50 bp) and used the raw precomputed files.
We concatenated all results and further split variants with multiple
annotations. Amongall variants, 32,105 exhibited multiple annotations
with different effects on splicing (Supplementary Table 2). While we
included InDels and variants on the X chromosome in this scan, we
restricted all downstream analyses to autosomal single nucleotide
variants (SNVs) (Discussion).

Defining SAVs

For each variant, we identified the maximum SAP (4) among all
four classes: AG, AL, DG and DL. We then defined SAVs using two 4
thresholds: 4 max > 0.2 and 0.5, ‘SAVs’ and ‘high-confidence SAVs’,
respectively.

We determined whether the number of SAVs identified in each
archaicindividual was different than expected by randomly selecting
asample from 24 1KG populations. We annotated all variants present
among these individuals using SpliceAl and the hg38 annotations
included with the package. We then analysed the variants as for the
archaics (thatis, splitting multi-allelic sites and variants with multiple
GENCODE annotations). Wefiltered for variants witha4 max > 0.2 and
summed the number of variants per 1IKG sample that had at least one
alternate allele present.

Archaic variantsinmodern humans

We noted the distribution of each variant among the archaics using
eight classes: (1) Altai, (2) Chagyrskaya, (3) Denisovan, (4) Vindija, (5)
Late Neanderthal (Chagyrskaya and Vindija), (6) Neanderthal (Altai,
Chagyrskaya and Vindija), (7) shared (all four archaics) and (8) other
(all remaining possible subsets). The assignment was based on the
presence of at least one allele with an effect.

We assessed whether any variants present among the archaics
are also present in modern humans using biallelic SNVs and InDels
from 1KG, Phase 3 (ref. 40) and SNVs from gnomAD v.3 (ref. 41). We
used LiftOver”” to convert archaic variants from hgl9 to hg38. We then
normalized variants (norm -m - -f hg38.fa) and subset variants to those

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02053-5

withingenebodies (view -R genes.bed). We queried these variants for
allele count, allelenumber and allele frequencies (query -f). Further, for
1KG variants, we retrieved allele frequency per 1KG superpopulation:
Africa (AFR), Americas (AMR), East Asia (EAS), Europe (EUR) and South
Asia (SAS). These precomputed values had been rounded to two decimal
places in the Variant Call Format files (VCFs). Normalization, filtering
and querying were done using bcftools”. After using LiftOver to convert
backtohgl9 coordinates, we merged the 1IKG and gnomAD variants with
the archaic variants ensuring that the archaic and modern reference
and alternate alleles matched. Werecalculated the 1IKG allele frequency
for Africans as the annotated frequency included samples from an
admixed African population: African ancestry in the southwestern
United States (ASW). We subset samples from Esan (ESN), Mandinka
(GWD), Luhya (LWK), Mende (MSL) and Yoruban (YRI) and calculated
allele frequency as allele count divided by allele number per site.

We used two datasets to identify introgressed variants**%, These
datasets differintheir approachtorecognizingintrogressed sequences
and partly overlap thearchaic variants considered in this study. Others*
used the S statistic to classify humansequences asintrogressed. S leve-
rages high linkage disequilibrium among variantsinan admixed target
population that are absent in an unadmixed reference population’®”,
Introgressed haplotypes are then identified by maximizing the sum
of scores among all SNP subsets at a particular locus’”°. Tag SNPs are
those variants that match an archaic allele and occur with at least two
othertag SNPsin a 50 kb window. Haplotypes were defined as regions
encompossing >5 tag SNPs in LD within a given human population
(R?=0.8). We collated tag SNPs from all four populations: East Asian
(ASN), European (EUR), Melanesian (PNG) and South Asian (SAS). We
retained all metadata fromref. 47. A handful of tag SNPs encompass
multiple haplotypes that reflect differencesin haplotype size between
modern human populations; we retained the first record per variant.
Others*® developed a modified S' statistic, Sprime, which uses a scor-
ing method that adjusts the score based on the local mutation and
recombination rates, allows for low-frequency introgression in the
unadmixed outgroup and avoids windowing to identify introgressed
segments. We collated introgressed variants for 20 non-African popu-
lations and filtered for those that matched the Altai Neanderthal at
high-quality loci.

A handful of sequences in the hgl9 reference genome are intro-
gressed from archaic hominins. Therefore, we maximized the number
ofintrogressed sites we could analyse by defining sites, rather than vari-
ants, asintrogressed if either the reference or alternate allele for each
SAV matched any Neanderthal base at amatching position. We ensured
that SpliceAl predictions were similar for these allele pairs, regardless
of which was the reference and alternate, by generating a custom hgl9
sequence where introgressed reference alleles (n =7,977) fromref. 47
were replaced by the alternate allele using a custom script. We then
applied SpliceAlto the introgressed reference alleles, now considered
tobethealternate. We found that 24 of the 26 variants were classified as
SAVs (Supplementary Table 13). One of the remaining two variants was
nearlyidenticalin splicing probability (4 max =0.19 and4 max=0.2),
whereas the other variant’s predictions were different (A max = 0.16 and
Amax = 0.31) (Supplementary Table 13). Given this overall similarity, we
maintained the original predictions for introgressed* reference alleles
in our dataframe but provide the predictions when these nucleotides
arethealternateallele for all SAVs and non-SAVsin the project GitHub
repository. We recalculated allele frequencies for all introgressed
variants to account for sites where the reference sequence contained
introgressed alleles, as the precomputed 1KG allele frequency would
be incorrect. The ref. 48 metadata designate whether the reference
or alternate allele is introgressed. Therefore, we used the 1KG allele
frequency for sites with anintrogressed alternate allele and subtracted
the 1KG allele frequency from 1 for sites with an introgressed refer-
enceallele. Forref. 47 introgressed variants, we calculated an average
from the metadata, which included the allele frequencies in various

populations for the introgressed allele. We took the mean of the AFR,
AMR, EAS, EUR and SAS frequencies for all introgressed positions.

The presence ofintrogressed allelesin the humanreference results
in previously excluded human polymorphisms due to our filtering
criteria. We quantified these potential ancient or introgressed SAVs
byintersecting sites that were fixed among the archaics for the human
reference with introgressed alleles from refs. 47,48 using bedtools2
v.2.30 (ref. 80). We repeated the above procedure, inserting the alter-
nate alleles fromintersected sitesinto the hgl9 reference and running
SpliceAl on the reference alleles formatted as alternate alleles. This
yielded 12,003 variants from 11,833 positions, of which 41 variants had
aA max > 0.2.Wedonotinclude these variants in the main text but the
SpliceAl predictions for all SAVs and non-SAVs from this set are available
inthe project GitHub repository.

We categorized each variant’s ‘origin’ on the basis of presence in
1KG and gnomAD as well as whether or not the variant was introgressed.
Further, we classified each variant’s allele origin on the basis of intro-
gressed variants identified by ref. 47 ‘Vernot allele origin’ and ref. 48
‘Browningallele origin’ due to the incomplete overlap among variants
in those datasets. Variants that did not occur in 1KG or gnomAD were
defined as ‘archaic-specific’. Low-frequency variants in modern humans
arealso highly likely to be the result of recurrent mutation rather than
shared ancestry. In support of this hypothesis, we found that CpGs
were enriched among rare variants (allele frequency <0.0001) versus
non-CpG common variants (allele frequency >0.01) (Fisher’s exact test,
OR =1.88,P<0.0001). Therefore, we also designated gnomAD variants
whose allele frequency was <0.0001 as ‘archaic-specific’. Sample sizes
in1KG and GTEx do not permit this level of sensitivity; therefore, allele
frequency was only considered for gnomAD variants. Variants that
were present in 1KG or gnomAD at an allele frequency >0.0001 and
introgressed were defined as ‘introgressed’. Variants that were present
in1KG orgnomAD atanallele frequency >0.0001but notintrogressed
were considered ‘ancient’ at two confidence levels. ‘High-confidence
ancient’ variants were presentin atleast two 1KG superpopulationsatan
allele frequency >0.05, while low-confidence ancient’ variants did not
meetthis threshold. We report analyses on the high-confidence ancient
set; this helps to remove cases of potential convergent mutation. We
did not retrieve population-level allele frequency data for gnomAD
variants; therefore, common variants present in gnomAD and absent
from 1KG were classified as ‘low-confidence ancient’. We restricted
analyses including allele frequency as a variable to 1KG variants with
population-level allele frequencies.

Gene characteristics, mutation tolerance and conservation

We used the SpliceAl annotation file for hgl9 from GENCODE, Human
Release 24 (ref. 76), to count the number of exons per gene and calculate
thelengthinbase pairs of the gene body and the coding sequence. The
number of isoforms per gene were retrieved from GENCODE, Human
Release 40. We retrieved missense and loss-of-function (LoF) observed/
expected ratios from gnomAD* to quantify each gene’s tolerance to
mutation. We also considered conservationat the variant level. We used
the primate subset of the 46-way multispecies alignment®. Positive
phyloP scoresindicate conservation or slower evolution thanexpected,
whereas negative phyloP scores indicate acceleration or faster evolu-
tion than expected based on a null hypothesis of neutral evolution.

Phenotype enrichment

We followed the approach of ref. 10 to assess enrichment for SAVs in
genes implicated in different human phenotypes. Many gene enrich-
ment analyses suffer from low power to detect enrichment because
an entire genome is used as the null distribution. Relatedly, SAVs are
unevenly distributed throughout archaic genomes. We addressed
thisissue by generating a null distribution from the observed data. We
first retrieved phenotypes and the associated genes per phenotype
from Enrichr® ", We used both the 2019 GWAS Catalog and the HPO.
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The GWAS Catalog largely considers common disease annotations
and has 1,737 terms with 19,378 genes annotated*’, whereas HPO
largely considers rare disease annotations and has 1,779 terms with
3,096 genes annotated®. All 3,516 terms were manually curated into
one of 16 systems: behavioural, cardiovascular, digestive, endo-
crine, haematologic, immune, integumentary, lymphatic, meta-
bolic, nervous, other, reproductive, respiratory, skeletal, skeletal
muscle and urinary.

We considered nine different gene sets, generated using SAVs with
A >0.2, for our enrichment analyses: (1) genes with lineage-specific
Altai SAVs (n=283), (2) genes with lineage-specific Chagyrskaya SAVs
(n=165), (3) genes with lineage-specific Denisovan SAVs (n = 859), (4)
genes with lineage-specific Vindija SAVs (n =228), (5) genes with SAVs
presentinall three Neanderthals (n =227), (6) genes with SAVs shared
amongallfour archaics (n =106), (7) genes with all archaic-specific SAVs
(n=1,907),(8) genes withintrogressed SAVs per ref. 47 (n=239) and (9)
genes with introgressed SAVs per ref. 48 (n=361). The shared set only
included variants present in all four archaics and excluded those that
wereinferred from parsimony. We retained duplicated gene names to
reflect genes with multiple SAVs.

Weidentified which genes were presentin both the GWAS Catalog
and HPO per set using aBooleanto calculate the observed gene counts
per term per ontology. We then removed GWAS and HPO terms per set
that did notinclude atleast one gene from the set. This resulted in 631
Altai, 1,407 archaic-specific, 761 ref. 48 introgressed, 412 Chagyrskaya,
1,023 Denisovan, 515 Neanderthal, 295 shared, 627 ref. 47 introgressed
and 474 Vindija terms for the 2019 GWAS Catalog and 622 Altai, 1,490
archaic-specific, 720 ref. 48 introgressed, 391 Chagyrskaya, 1,152 Den-
isovan, 528 Neanderthal, 306 shared, 651 Vernot et al. 2016 introgressed
and 522 Vindija terms for the HPO.

The max 4 was then shuffled across all 1,607,350 variants without
modifying the annotation, allele origin or distribution data. The distri-
bution of genes for both ontologies was then recorded. We repeated
this process 1 x 10* times per set and calculated enrichment as the
number of observed genes divided by the mean empirical gene count
per term. The Pvalues were calculated as the proportion of empirical
counts +1 > the observed counts + 1. We adjusted our significance level
due to multiple testing by correcting for the FDR. We used a subset
(n=1x10% ofthe empirical null observations and selected the highest
Pvalue threshold that resulted in a V/R < Q where Vis the mean num-
ber of expected false discoveries and R is the observed discoveries™.
We calculated adjusted significance levels for each set for Q at both
0.05and 0.1.

New transcripts and proteins

We constructed anew transcript per SAV to assess downstream effects
ontheresulting protein. We generated a canonical transcript per gene
using the exons defined from GENCODE. Next, we constructed a new
transcript using the splicing alteration class (acceptor gain, acceptor
loss, donor gain or donor loss) and associated position information
on the maximum distance between a variant and gained/lost splice
site per SAV. As we used the default SpliceAl settings for analysis, this
maximum distance was set to 50 bp. For SAVs with multiple splicing
class alterations, for example, a variant that results in both an accep-
torgainand anacceptor loss, we modelled the alteration class per SAV
with thelargest 4.

For acceptor and donor gains, we identified the relevant exon
and added or removed sequence based on the SpliceAl prediction
(Extended DataFig. 7). For acceptor losses, we removed the subsequent
exon from the transcript if the effect occurred at the upstream exon
boundary (Extended Data Fig. 7). Similarly, we added the intronic
sequence to the canonical transcript for donor losses that occurred at
the exonboundary (Extended DataFig. 7). For each of these scenarios,
we included the variant when appropriate but otherwise kept the
canonical sequence. We then retrieved a single start codon position

from the associated general feature format file (GFF), prioritizing
the longest and experimentally validated (Ensembl) versus compu-
tationally predicted (HAVANA) start sites when there were multiple
start positions.

We compared the canonical and new transcripts and the resulting
protein (Supplementary Data 3). We assigned each SAV as resultingin
one of seven effects on the basis of transcript/protein length and com-
position: (1) the canonical and new transcripts/proteins are identical
(no effect), (2) the new protein is longer than the canonical one and
includes PTCs (longer with PTCs), (3) the new proteinis longer and does
not include PTCs (longer without PTCs), (4) the 5’ or 3'UTR is longer
thanthe canonical transcript, (5) the new proteinisthe samelength as
the canonical one but contains a single missense variant (single mis-
sense), (6) the new proteinis shorter than canonical protein (truncated
protein) and (7) the 5’ or 3’ UTR is more truncated than the canonical
transcript (truncated UTR).

Gene expression, tissue specificity and sQTL
We used TPM counts for each gene from GTEXx v.8, to analyse expres-
sion. We quantified tissue specificity as the relative entropy of each
gene’s expression profile across 34 tissues compared to the median
across genes overall. Thus, a gene with expression only in a small
number of tissues would have high relative entropy and a gene with
expressionacross many tissues would have low relative entropy to this
background distribution. The 34 tissues were selected on the basis of
groupings from the Human Protein Atlas to minimize the amount of
sharing between distinct tissues, for example, since brain tissues are
overrepresented in GTEX. We used median expression across tissues as
the nulland calculated relative entropy using the entropy function from
the SciPy statistics package®. On the basis of the observed distribution
of relative entropy scores (Supplementary Fig.19), we designated genes
with scores <0.1 as ‘low tissue specificity’, genes with scores >0.1 and
<0.1as ‘medium tissue specificity’ and genes with scores >0.5 as ‘high
tissue specificity’. We compared both the number of SAVs per gene and
the maximum 4 for SAVs among the three relative entropy categories.
We downloaded sQTL datafrom GTEx v.8. We collated significant
variant-gene associations (n = 24,445,206) across all 49 tissues and
intersected these with SAVs, using LiftOver”” to convert the SAVs to
hg38 and then back to hgl9 after intersecting.

Major spliceosome complex

We characterized differences in the major spliceosome complex
between archaics and modern humans by identifying missense vari-
antsinthe 147 genes associated with the complex. We identified 1,746
variants that did not occur in 1IKG or gnomAD or were present at low
frequencyingnomAD (thatis, ‘archaic-specific’). We ran these variants
through the Ensembl Variant Effect Predictor (VEP)*? using the GRCh37.
p13 assembly and all default options.

We repeated the above analysis on all four archaics and the ran-
domly sampled 1KG individuals (defining SAVs) using all variants that
occurredinthe spliceosome genes and analysed them with VEP using
theappropriate assembly.

Analysis

All dataanalyses were performed using Bash and Python scripts, some
of which were implemented in Jupyter notebooks. We used samtools
v.1.16, to index custom FASTAs®. We used non-parametric tests to
analyse dataincluding Fisher’s exact test, Kruskal-Wallis tests, Mann—
Whitney Utests and Spearman correlation, implemented with SciPy*".
Partial correlations were run using the Pigouin package v.0.5.2 (ref. 86).
Some additional metrics were calculated using custom functions. All
reported Pvalues are two-tailed, unless otherwise noted. The machine
used to run analyses had a minimum value for representing floating
numbers of 2.2250738585072014 x 10%, Therefore, we abbreviate
values less than this as 2.23 x 107%,
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Visualization

Results were visualized using Inkscape v.1.1(ref. 87) and ggplot v.3.3.6
(ref. 88) implemented in R v.4.1.2 (ref. 89). Additional packages used
to generate figures include: complex-upset v.1.3.3 (ref. 90), cowplot
v.1.1.1, eulerr v.6.1.1 (ref. 91), reshape2 v.1.4.4 (ref. 92) and tidyverse
v.1.3.2 (refs. 93).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheSpliceAl annotated archaic variant dataset is available on Dryad®.
Source data are provided with this paper.

Code availability

The archived version of the code used to conduct analyses and gener-
ate figures has been deposited in Zenodo®. A non-archived version is
available on GitHub (https://github.com/brandcm/Archaic_Splicing).
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GWAS Term Enrichment for Shared SAVs
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Extended Data Fig.1| Shared phenotype enrichment. (A) Phenotype
associations enriched among genes with archaic-specific shared SAVs based on
annotations from the 2019 GWAS Catalog. Phenotypes are ordered by increasing
enrichment within manually curated systems. Circle size indicates enrichment
magnitude. Enrichment and p-values were calculated from a one-sided
permutation test based on an empirical null distribution generated from 10,000
shuffles of maximum A across the entire dataset (Methods). Dotted and dashed

lines represent false-discovery rate (FDR) corrected p-value thresholds at F
DR=0.05and 0.1, respectively. At least one example phenotype with a p-value
<thestricter FDR threshold (0.05) is annotated per system. (B) Phenotypes
enriched among genes with archaic-specific shared SAVs based on annotations
from the Human Phenotype Ontology (HPO). Data were generated and visualized
asinA.See Supplementary Data 2 for all phenotype enrichment results.
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Extended DataFig. 2| Altai phenotype enrichment. (A) Phenotype
associations enriched among genes with archaic-specific Altai SAVs based on
annotations from the 2019 GWAS Catalog. Phenotypes are ordered by increasing
enrichment within manually curated systems. Circle size indicates enrichment
magnitude. Enrichment and p-values were calculated from a one-sided
permutation test based on an empirical null distribution generated from 10,000
shuffles of maximum A across the entire dataset (Methods). Dotted and dashed

lines represent false-discovery rate (FDR) corrected p-value thresholds at
FDR=0.05and 0.1, respectively. At least one example phenotype with a p-value
<thestricter FDR threshold (0.05) is annotated per system. (B) Phenotypes
enriched among genes with archaic-specific Altai SAVs based on annotations
from the Human Phenotype Ontology (HPO). Data were generated and visualized
asinA.See Supplementary Data 2 for all phenotype enrichment results.
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Extended Data Fig. 3| Chagyrskaya phenotype enrichment. (A) Phenotype
associations enriched among genes with archaic-specific Chagyrskaya SAVs
based onannotations from the 2019 GWAS Catalog. Phenotypes are ordered by
increasing enrichment within manually curated systems. Circle size indicates
enrichment magnitude. Enrichment and p-values were calculated froma one-
sided permutation test based on an empirical null distribution generated from
10,000 shuffles of maximum A across the entire dataset (Methods). Dotted and

dashed lines represent false-discovery rate (FDR) corrected p-value thresholds at
FDR=0.05and 0.1, respectively. At least one example phenotype with a p-value
<thestricter FDR threshold (0.05) is annotated per system. (B) Phenotypes
enriched among genes with archaic-specific Chagyrskaya SAVs based on
annotations from the Human Phenotype Ontology (HPO). Data were generated
and visualized as in A. See Supplementary Data 2 for all phenotype enrichment
results.
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Extended Data Fig. 4 | Denisovan phenotype enrichment. (A) Phenotype
associations enriched among genes with archaic-specific Denisovan SAVs
based onannotations from the 2019 GWAS Catalog. Phenotypes are ordered by
increasing enrichment within manually curated systems. Circle size indicates
enrichment magnitude. Enrichment and p-values were calculated from a one-
sided permutation test based on an empirical null distribution generated from
10,000 shuffles of maximum A across the entire dataset (Methods). Dotted and

dashed lines represent false-discovery rate (FDR) corrected p-value thresholds at
FDR=0.05and 0.1, respectively. At least one example phenotype with a p-value
<thestricter FDR threshold (0.05) is annotated per system. (B) Phenotypes
enriched among genes with archaic-specific Denisovan SAVs based on
annotations from the Human Phenotype Ontology (HPO). Data were generated
and visualized as in A. See Supplementary Data 2 for all phenotype enrichment
results.
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dashed lines represent false-discovery rate (FDR) corrected p-value thresholds at

Extended DataFig. 5| Neanderthal phenotype enrichment. (A) Phenotype
FDR=0.05and 0.1, respectively. At least one example phenotype with a p-value <

associations enriched among genes with archaic-specific Neanderthal SAVs

based onannotations from the 2019 GWAS Catalog. Phenotypes are ordered by
increasing enrichment within manually curated systems. Circle size indicates
enrichment magnitude. Enrichment and p-values were calculated froma one-
sided permutation test based on an empirical null distribution generated from
10,000 shuffles of maximum A across the entire dataset (Methods). Dotted and

the stricter FDR threshold (0.05) is annotated per system. CVD = cardiovascular
disease, Lp-PLA2 =Lipoprotein phospholipase A2. (B) Phenotypes enriched
among genes with archaic-specific Neanderthal SAVs based on annotations from
the Human Phenotype Ontology (HPO). Data were generated and visualized asin
A.See Supplementary Data 2 for all phenotype enrichment results.
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Extended DataFig. 6 | Vindija phenotype enrichment. (A) Phenotype
associations enriched among genes with archaic-specific Vindija SAVs based on
annotations from the 2019 GWAS Catalog. Phenotypes are ordered by increasing
enrichment within manually curated systems. Circle size indicates enrichment
magnitude. Enrichment and p-values were calculated from a one-sided
permutation test based on an empirical null distribution generated from 10,000
shuffles of maximum A across the entire dataset (Methods). Dotted and dashed

lines represent false-discovery rate (FDR) corrected p-value thresholds at
FDR=0.05and 0.1, respectively. At least one example phenotype with a p-value
<thestricter FDR threshold (0.05) is annotated per system. (B) Phenotypes
enriched among genes with archaic-specific Vindija SAVs based on annotations
from the Human Phenotype Ontology (HPO). Data were generated and visualized
asinA.See Supplementary Data 2 for all phenotype enrichment results.
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Extended Data Fig. 7| Modelling SAV effects on the canonical transcript. We
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the canonical transcript for that gene. We considered only one effect per SAV (for
example, either an acceptor gain, acceptor loss, donor gain or donor loss) based
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Extended Data Fig. 9 | Vernot et al. 2016 introgressed phenotype enrichment.
(A) Phenotype associations enriched among genes with* introgressed SAVs
based onannotations from the 2019 GWAS Catalog. Phenotypes are ordered by
increasing enrichment within manually curated systems. Circle size indicates
enrichment magnitude. Enrichment and p-values were calculated froma one-
sided permutation test based on an empirical null distribution generated from
10,000 shuffles of maximum A across the entire dataset (Methods). Dotted and

dashed lines represent false-discovery rate (FDR) corrected p-value thresholds at
FDR=0.05and 0.1, respectively. At least one example phenotype with a p-value
<thestricter FDR threshold (0.05) is annotated per system. (B) Phenotypes
enriched among genes with* introgressed SAVs based on annotations from the
Human Phenotype Ontology (HPO). Data were generated and visualized asin A.
See Supplementary Data 2 for all phenotype enrichment results.
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Extended Data Fig.10 | Browning et al. 2018 introgressed phenotype (FDR) corrected p-value thresholds at FDR=0.05and 0.1, respectively. At least
enrichment. (A) Phenotype associations enriched among genes with*® one example phenotype with a p-value < the stricter FDR threshold (0.05) is
introgressed SAVs based on annotations from the 2019 GWAS Catalog. annotated per system. CEA = carcinoembryonic antigen, FGF =fibroblast growth
Phenotypes are ordered by increasing enrichment within manually curated factor. (B) Phenotypes enriched among genes with* introgressed SAVs based on
systems. Circle size indicates enrichment magnitude. Enrichment and p-values annotations from the Human Phenotype Ontology (HPO). Data were generated
were calculated from a one-sided permutation test based on an empirical null and visualized asin A. See Supplementary Data 2 for all phenotype enrichment
distribution generated from 10,000 shuffles of maximum A across the entire results.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  We used bcftools, version 1.13 to filter genomic data from archaic hominins, Thousand Genomes, and gnomAD. Splice altering variants were
identified using SpliceAl, version 1.3.1.
Data analysis All data analyses were performed using Bash and Python scripts, some of which were implemented in Jupyter notebooks.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

We used publicly available data for all analyses. Archaic InDel data are from the following repository: http://ftp.eva.mpg.de/neandertal/Vindija/VCF/indels/. Archaic
SNV data are from the following repositories: Altai Neanderthal (http://ftp.eva.mpg.de/neandertal/Vindija/VCF/Altai/), Chagyrskaya (http://ftp.eva.mpg.de/
neandertal/Chagyrskaya/VCF/), Denisova (http://ftp.eva.mpg.de/neandertal/Vindija/VCF/Denisova/), and Vindija (http://ftp.eva.mpg.de/neandertal/Vindija/VCF/




Vindija33.19/). Modern human data are from the Thousand Genomes Project (http://hgdownload.soe.ucsc.edu/gbdb/hg38/1000Genomes/) and gnomAD (https://
gnomad.broadinstitute.org/downloads#v3-variants). Introgressed tag SNPs from Vernot et al. 2016 were retrieved from: https://drive.google.com/drive/
folders/0B9Pc7_zItMCVMOSrUmhDcOhkWmc?resourcekey=0-zwKyJGRuooD9bWPRZOvBzQ. Introgressed variants from Browning et al. 2018 were retrieved from:
https://data.mendeley.com/datasets/y7hyt83vxr/1. gnomAD constraint data were retrieved from: https://storage.googleapis.com/gcp-public-data--gnomad/
release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz. phyloP data for the primate subset were retrieved from: http://hgdownload.soe.ucsc.edu/
goldenPath/hg19/phyloP46way/primates.phyloP46way.bw. ASE variants were retrieved from: https://drive.google.com/file/d/10ebWfA-sboAL1SDplmIrvH-
xK4x3iohV/view. TPM data were retrieved from the Human Protein Atlas (https://www.proteinatlas.org/download/rna_tissue_gtex.tsv.zip). sQTL data were
retrieved from GTEXx, version 8 (https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8 sQTL.tar). Genes associated with the
major spliceosome complex were retrieved from the HUGO Gene Nomenclature Committee (https://www.genenames.org/data/genegroup/#!/group/1518). The
compiled dataset used in our analyses is available on Dryad (DOI: 10.7272/Q6H993F9).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender n/a

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used all available high-coverage archaic hominin genomes. We used data from the Thousand Genomes project and gnomAD to survey
archaic splice altering variants in modern humans; two of the largest and geographically diverse whole genome datasets. We also used sQTLs
from GTEx, which represents one of the largest and tissue diverse datasets for genetic variants linked to gene expression.

Data exclusions  We excluded some called archaic genotypes that did not pass our quality control thresholds.
Replication We confirmed that patterns among splice altering variants broadly agreed among all four archaic individuals.
Randomization  Sample randomization was not relevant to this study because such methods were not needed to address the research questions.

Blinding Blinding was not relevant to this study because we made no potentially subjective conclusions about specific samples.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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