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ABSTRACT

Enabling discovery across the spectrum of rare and common diseases requires the integration of biological

knowledge with clinical data; however, differences in terminologies present a major barrier. For example, the

Human Phenotype Ontology (HPO) is the primary vocabulary for describing features of rare diseases, while

most clinical encounters use International Classification of Diseases (ICD) billing codes. ICD codes are further

organized into clinically meaningful phenotypes via phecodes. Despite their prevalence, no robust phenome-

wide disease mapping between HPO and phecodes/ICD exists. Here, we synthesize evidence using diverse

sources and methods—including text matching, the National Library of Medicine’s Unified Medical Language

System (UMLS), Wikipedia, SORTA, and PheMap—to define a mapping between phecodes and HPO terms via

38 950 links. We evaluate the precision and recall for each domain of evidence, both individually and jointly.

This flexibility permits users to tailor the HPO–phecode links for diverse applications along the spectrum of

monogenic to polygenic diseases.
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Lay Summary

Rare and common diseases are often described using different terminologies that have no available translations. This makes

sharing knowledge across these domains challenging. For instance, the Human Phenotype Ontology (HPO) is a vocabulary

used to characterize the symptoms and features of rare diseases, while common diseases are often described by phenotype

codes (phecodes) that are derived from clinical visits. This study fills this critical gap by creating and evaluating a map

between phecodes and HPO terminology. The mapping is curated from multiple data sources and methods, including text-

matching, the Unified Medical Language System (UMLS), and Wikipedia. We outline how this translation between rare and

common disease vocabularies can be tailored to fit different applications. In conclusion, this map helps build a foundation

for bridging genome biology and medicine and enabling new biomedical discoveries by connecting existing resources and

tools across the spectrum of rare and common disease.
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INTRODUCTION

Genetic traits have traditionally been stratified into distinct Mende-

lian (ie, monogenic) and complex (ie, polygenic) categories. How-

ever, the genetic causes of traits exist on a continuum, and

Mendelian and complex diseases often share symptoms and fea-

tures.1 Nonetheless, different vocabularies are commonly used to

describe diseases and their features. For example, the Human Pheno-

type Ontology (HPO) is a standard lexicon for describing symp-

toms, signs, and features of rare Mendelian disease.2 HPO

terminology forms the basis for gene–phenotype relationships in the

most comprehensive genetic disease database, Online Mendelian

Inheritance in Man (OMIM).3,4 In contrast, most clinical encounters

and electronic health record (EHR) research use International Clas-

sification of Diseases (ICD) codes. To facilitate discovery, ICD codes

are often grouped into phecodes, which are manually curated cate-

gories of clinically-meaningful phenotypes.5–7 A wealth of rich clini-

cal and research data are annotated with HPO terms or ICD/

phecodes. Together, these have the potential to enable discovery and

translation of insights between rare and common diseases, yet no

phenome-wide mapping between these vocabularies exists.

Previous attempts to link HPO terminology and EHR-related

codes demonstrate feasibility, but they have been incomplete or

domain-specific.2 For example, approaches have been fruitful in

linking HPO terms to other annotation sets including clinical labo-

ratory data via Laboratory Observation Identifier Names and Codes

(LOINC).2,8 Phenotypic symptoms have also been mapped to dis-

eases using ICD and HPO codes; yet, the links were often too gen-

eral or too specific to accurately reflect typical disease

manifestations.9 Semantic mapping between HPO terms and

another international health terminology system—Systematized

Nomenclature of Medicine-Clinical Terms (SNOMED-CT)—dem-

onstrated the ability to identify complete and partial mappings

between ontologies.10–12 However, this work was before the inte-

gration of HPO into the Unified Medical Language System (UMLS)

and, thus, represents an opportunity for improvement. We hypothe-

size that synthesizing both foundational and novel resources will

allow for a robust mapping between vocabularies.

Despite these challenges, small-scale manual mappings between

HPO and EHR annotations have demonstrated potential to facili-

tate innovation in biomedical informatics methods. For example,

phenotype risk scores (PheRS) enable the recognition of undiag-

nosed Mendelian disease from EHR data using weighted aggregates

of clinical phenotypes linked to diseases.13 Manual mapping of

HPO and phecodes for 16 Mendelian disorders allowed the identifi-

cation of a genetic etiology for previously undiagnosed individuals

in the EHR.14 Notably, an HPO-focused mapping has a distinct

advantage over OMIM disease-ICD code mapping, because it allows

for the detection of individuals with rare disease symptomatology

without an established ICD-coded diagnosis. In a domain-specific

example, manually linking neurology-related problems in the EHR

with HPO codes via Intelligent Medical Objects (IMO) terms uncov-

ered longitudinal patterns underlying specific genetic causes of epi-

lepsy.15 These previous maps addressed only a fraction of the

phenome, yet their approaches and downstream applications—

including the discovery of genetic associations through phenome-

wide association tests (PheWAS)16—would be applicable at the

population-scale if a complete mapping were available.

Here, we define maps between phecodes and HPO terms to ena-

ble translation of insights between datasets annotated with these dif-

ferent disease ontologies. We integrate evidence from diverse

complementary sources including text matching, the National of

Library Medicine’s Unified Medical Language System (UMLS),17

existing software and knowledge bases that map ontologies—for

example, SORTA18 and PheMap19—and tools that leverage shared

knowledge in Wikipedia articles—for example, WikiMedMap.20

Using manual curation and review, we evaluate the precision and

recall of each piece of evidence, both individually and jointly. This

flexibility permits future users to select HPO–phecode links that are

appropriate for diverse research questions along the spectrum of

monogenic to polygenic diseases to advance precision medicine.

MATERIALS AND METHODS

Strategy for creating a map between phecodes and

HPO terms
To create a map between phecodes and HPO terms, we use 2 kinds

of evidence for linking these terminologies. First, we considered evi-

dence that “directly” links phecodes with HPO codes. Second, we

linked phecodes with HPO terms “indirectly” via established ICD

code mappings. Because phecodes are manually curated hierarchies

of ICD codes, any HPO term linked to an ICD code could then be

mapped to the corresponding phecode. We identify these indirect

links via both ICD-9-CM and ICD-10-CM codes. These direct and

indirect links are graphically illustrated in Figure 1A.

HPO terms are from the release on April 14, 2022.2 We exclude

the ontology root (HP:0000001), root of all phenotypic abnormal-

ities (HP:0000118), and terms that are modes of inheritance

(HP:0000005), clinical modifiers (HP:0012823, eg, “mild”), fre-

quency (HP:0040279, eg, “very rare”), blood groups

(HP:0032223), and health status (HP:0032319, eg, “Unaffected”).

These exclusions removed 246 total terms. Phecodes are from ver-

sion 1.2 available in the PheWAS catalog.16 We also replicated all

analyses with Phecode X (Supplementary Figure S1), a new extended

version with increased granularity and coverage of terms related to

pregnancy, congenital anomalies, and neonatology. However, it is

currently unpublished and undergoing continued quality control;

thus, results from Phecode X are in the Supplementary Material.

Types of evidence
Building off the methods outlined by the previous, but incomplete,

phecode–HPO mapping from Bastarache et al.,13,14 we integrated

several sources of evidence. Here, we outline each evidence type

(Figure 1), but we provide further technical details and implementa-

tion examples in the Supplementary Text.

1. String or sub-string match: We include links where the HPO

term—or any specified synonym of the HPO term—is an exact

string match or a sub-string match of a phecode name (direct) or

ICD code name (indirect). Medical spelling terminology was

Americanized, punctuation was removed, and the case was not

considered when matching. When sub-string matching, we per-

mit word order permutations. To reduce false matches, we

required that the sub-string was longer than 5 characters and at

least two-thirds the length of the target string.

2. UMLS: The UMLS Metathesaurus organizes medical concepts

with Concept Unique Identifier (CUI) strings. If an HPO code and

an ICD code are annotated by the same CUI, we link them

together because they describe the same medical concept (indirect

only). We use UMLS version 2022AA.17 We describe further

details of the UMLS mapping, including synonymous
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Figure 1. Creating and evaluating a map between phecodes and HPO terms. (A) HPO codes and phecodes can be linked by a variety of evidence (arrows). Some

evidence links codes directly, indirectly via ICD codes, or both. Counts for ICD codes indicate how many codes have phecode links. (B) Many links identified by

one piece of evidence (rows) are also identified using alternative evidence (columns). The proportion of links identified by the alternative evidence is shown. Sup-

plementary Figure S3 is a larger annotated version of this figure and Supplementary Figure S4 replicates this with phecode X. (C) (i) We evaluate the number of

links established by each evidence type and the corresponding (ii) recall and (iii) precision of these links. Evaluation of recall is based on 4200 manually defined

HPO–phecode links, and evaluation of precision is based on manual review of 300 randomly selected links. For evidence that has a quantitative score, we report

these measures at 2 thresholds (more stringent in the lighter bottom bars). Precision is evaluated using 3 designations—“exact” match (solid), HPO is a subcate-

gory (dotted), and phecode is a subcategory (open circles)—and represented with stacked bars. (D) We depict the same analyses from C with the map that

includes links that are children of the target HPO term (Materials and Methods). Counts, recall, and precision for the phecode X mapping are in Supplementary

Figures S5–S7, respectively. Definitions for strong specific and broad evidence were curated based on the precision and recall and are discussed in the

Conclusions.
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relationships and how the mappings encompass evidence sup-

ported by SNOMED CT mappings, in the Supplementary Text.

3. SORTA: SORTA is a system for encoding free text to a formal

coding system or ontology.18 SORTA provides similarity scores

between the query and the candidate match. We report links

between HPO terms and phecodes (direct) or ICD codes (indi-

rect) with scores above 80%, but output the raw score so users

can define stricter thresholds if desired. For our analysis, we

defined 100% similarity as the most stringent threshold.

4. PheMap: PheMap is a knowledge base that incorporates multiple

online resources (Mayo Clinic Patient Care & Health Informa-

tion website, MedlinePlus, MedicineNet, WikiDoc, and Wikipe-

dia) to estimate the strength of relationships between phenotypes

and medical concepts (encoded by CUI)19 (Supplementary Text).

We map phecodes to HPO codes (direct only) if PheMap (v1.1)

identifies that the phecode is related to a CUI that is shared with

an HPO code. This indicates the phecode and HPO code describe

the same medical concept. We report links with scores in the top

95th percentile but also output raw scores. For our analysis, we

define the 99th percentile as the most stringent threshold.

5. WikiMedMap: WikiMedMap is a tool that queries Wikipedia to

extract ICD code references found in Wikipedia pages. It lever-

ages a large database of alternative names and abbreviations for

string normalization.20 We map HPO terms to ICD codes (indi-

rect only) if an ICD code is found within a page identified by an

HPO term search. We note that links generated by WikiMedMap

may update if run at another time because Wikipedia pages are

living documents.

We report this map as a large table of phecode–HPO links and

their corresponding supporting evidence. An example of this is

shown in Table 1. We also create and evaluate a second set of phe-

code–HPO links that include all child HPO terms. For example, all

phecodes linked to the HPO term “Anemia” would also be linked to

more specific terms like “Microcytic anemia.” If an HPO term had

more than 100 children, we did not complete this linking process to

avoid very broad terms getting linked to hundreds of narrow terms

(eg, “Abnormality of limbs” has 2857 children). Traversal of the

HPO ontology was aided by pyHPO.2

Evaluating phecode and HPO links
Each of the HPO–phecode maps was evaluated on their recall (sensi-

tivity) and precision (positive predictive value). To test the recall in a

realistic research scenario, we manually linked 4200 HPO codes

that describe known Mendelian diseases in OMIM to their best-

fitting phecode.2,4 We quantify how many true positives are identi-

fied by each type of evidence over the total positives in our manual

set. To test precision, we manually reviewed 300 randomly selected

HPO–phecode links per map (1200 over 4 maps) to determine if the

mapping was accurate using 3 designations: HPO and phecode are

an “exact” match; the HPO term is a subcategory of the phecode;

or, the phecode is a subcategory of the HPO term. We report preci-

sion for each of these designations of a “true match.”

RESULTS

Five domains of evidence identify 38 950 phecode–HPO

links
Our mapping identifies 10 579 links between phecodes and HPO

terms, and an additional 28 371 links when including the children of

HPO terms for a total of 38 950 unique links. On average, phecodes

are linked to 6.2 HPO terms and HPO terms are linked to 3.1 phec-

odes which reflects the more granular nature of HPO terms. As

expected, this increases when considering HPO term children: each

phecode links to 22.9 HPO terms on average. Distributions of the

link counts between HPO terms and phecodes are in Supplementary

Figure S2.

Different sources of evidence identify both shared and unique

phecode–HPO links (Figure 1B, Supplementary Figures S3 and S4).

The most sharing occurs between string and sub-string matches (ie,

by definition, all string matches are also sub-string matches). The

most unique links are established by PheMap, UMLS (especially via

ICD-10), and WikiMedMap which, respectively, identify 36%,

21%, and 17% of links that are not found by a second source of evi-

dence. Considering all phecode–HPO links, 39% are identified by

only one type of evidence and, on average, each link is supported by

3.3 types of evidence (Supplementary Figure S2).

Different sources of evidence identify different numbers of phe-

code–HPO links. Exact phecode–HPO term string matches establish

the fewest links (n¼315) and UMLS CUI matches and synonyms

(via ICD-10) identify the most (n¼5458) (Figure 1Ci, Supplemen-

tary Figure S5). This increases to 1566 and 20 382 when including

HPO term children (Figure 1Di). In summary, 1698 phecodes (91%)

are mapped to at least one HPO term and 7957 HPO terms (48%)

are linked to at least one phecode (4522 HPO terms come from

including children, Supplementary Figure S2).

Precision–recall tradeoff varies by the evidence used
Recall

Using a manually-curated map of 4200 Mendelian-disease HPO

terms linked to phecodes, we evaluated recall for each type of evi-

dence both individually and jointly. UMLS and WikiMedMap inde-

pendently recall the most links (27.6%–27.9%) and string matching

recalls the fewest (5.7%). Using all evidence, we can recall up to

43% of links (Figure 1Cii). However, given the higher granularity of

HPO terms compared to phecodes we did not expect to recapitulate

most links because there is unlikely to be a perfect semantic match

in the more general phecode space. Accordingly, when we expand

our map to include all HPO term children, we are able to recall

68% of the manual links (Figure 1Dii). Phecode X achieves a slightly

increased recall up to 70%, likely due to its increased coverage of

terms related to Mendelian disease (eg, congenital anomalies) (Sup-

plementary Figure S6). We detail reasons for failing to identify man-

ually curated links in the Supplementary Text, including a lack of

reasonable link, a suitable identified alternative, or a more specific

mapping.

Precision

We evaluate the precision of the links generated with manual

review. As expected, evidence like string-matching—although it has

low recall—is highly precise (100%). The lowest precision of 82.7%

and 84.1% are, respectively, from UMLS and WikiMedMap via

ICD-10 (Figure 1Ciii, Supplementary Figure S7). Some evidence is

highly precise in matching terms at the same semantic level (eg,

HPO–phecode string, sub-string, and SORTA). Other types of evi-

dence correctly identify links but are more likely to do so at different

levels. For example, ICD string, sub-string, SORTA, and PheMap

links all have precision above 90%, but in many of their matches,

the HPO term is a sub-category of the phecode match (up to 71% of

links). Linking a broader HPO term to a narrower phecode is sub-

stantially less common but happens most frequently with UMLS-
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facilitated mappings (10%–15%) and PheMap links (14%). Consid-

ering all links from any evidence, the overall precision is 80.3%. We

detail examples of incorrect links via inaccurate evidence and related

terms or symptoms in Supplementary Text.

CONCLUSION

In summary, we present and evaluate a phecode–HPO map to ena-

ble the translation of insights across a spectrum of diseases and data

sources. To enable different use cases, we annotate each phecode–

HPO link with different levels of evidence, so that users can tailor

the mapping to their use. This will enable a broad range of applica-

tions—from PheRS to identify patients likely to benefit from genetic

testing to PheWAS to explore molecular mechanisms of disease at a

population-scale in the EHR.13,21 Our map helps build a foundation

for bridging genome biology and medicine by enabling connection

to existing large disease biology networks linking genes, phenotypes,

cross-species diseases, and model organisms (eg, Monarch Initia-

tive22,23) and it broadens the scope of tools or resources that use the

language of HPO (eg, Phenomizer,24 Exomiser,25 SimulConsult,26

Matchmaker Exchange,27 PhenoTips,28 GeneNetwork Assisted

Diagnostic Optimization [GADO],29 and GWAS Central30).31

In evaluating the phecode–HPO links, we find that some evi-

dence is more precise, while other types of evidence provide higher

recall (Figure 1, Supplementary Figures S5–S7). Direct string and

sub-string matching, SORTA candidate matches with a high similar-

ity score, and strong PheMap links are the most high-quality and

semantically exact. We define these as “strong specific evidence.” In

addition to these, we find that indirect string, substring, and UMLS

matches provide strong evidence, although they do not necessarily

indicate a match at the same level of granularity; thus, we define

these as “strong broad evidence.”

Finally, we explored precision–recall space for all possible com-

binations of evidence types to produce data-driven recommenda-

tions for mappings depending on the research scenario

(Supplementary Figure S8, Tables S1 and S2). Figure 2 provides a

flowchart to identify the suggested mapping based on the preference

for the type of match and prioritization of precision versus recall.

We make these filtered maps available at the phecode–HPO-map

Github and Dryad repositories.32

While this mapping is not comprehensive or without incorrect

links, it represents significant advantages over manual curation in

efficiency, avoiding user error, and minimizing potential bias from

curators’ preferences. Despite challenges in mapping across vocabu-

laries with different goals and granularities, this mapping provides

an accessible framework for both future research and mappings.

Achieving the promise of precision medicine requires integrating

knowledge across diverse domains from molecular mechanisms to

clinical practice. Ultimately, as more complex and rich healthcare

data become available it will be paramount to unite previously

siloed knowledge using flexible computational solutions.
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Figure 2. Subsets of HPO–phecode links provide flexibility for diverse applications. This flowchart guides selection of the appropriate HPO–phecode mapping for

an application. First, some mappings prioritize only exact semantic matches versus matches that include the children HPO terms (eg, an anemia phecode would

link to HPO term iron-deficiency anemia) versus all identified relationships. Second, mappings can prioritize precision or recall. The evidence types used in each

of these mappings are described in Supplementary Table S1. For each map, evidence types were selected by identifying the combination of evidence that

resulted in the maximal F0.5 score (to prioritize precision [P]) or F1 score (to prioritize recall [R]). The precision and recall are based on the manual review

described in the Materials and Methods (Supplementary Figure S8). The “Max Recall” mappings (indicated by *) include links from any evidence. Note that these

have the lowest precision and include up to 35% false positive links; therefore, we recommend evidence filters for most uses. A flowchart and evidence types

used for Phecode X are described in Supplementary Figure S9 and Table S2.
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SO.RRF, MRREL.RRF) (https://www.nlm.nih.gov/research/umls/

licensedcontent/umlsknowledgesources.html)17; and PheMap

knowledge base (https://www.vumc.org/cpm/phemap)

(PheMap_UMLS_Concepts_1.1.csv).19

All final mappings described in Figure 2, Supplementary Figure

S9, and all other data we generated are available in the Dryad digital

repository32 and GitHub repository “phecode-HPO-map” (https://

github.com/emcarthur/phecode-HPO-map). This includes inter-

mediate tables for each source of evidence and maps that were man-

ually curated and reviewed. It also includes intermediate mappings

to ICD-9 and ICD-10. It contains pre-filtered maps based on the

“strong specific” and “strong broad” evidence. We include a table

that also has pre-calculated precision and recall for all combinations

of evidence. Finally, we provide maps formatted for use with the

PheRS R package.33
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The publicly available code and software for analysis are available

in the following repositories: SORTA phenotype mapping software

on the Molgenis Cloud (https://sorta.molgeniscloud.org/menu/main/

home)18,34; WikiMedMap code that we modified for our mapping

(https://github.com/Linasulieman/WikiMedMap/).20

The custom code we generated are available in the GitHub repo-

sitory “phecode-HPO-map” (https://github.com/emcarthur/phe-

code-HPO-map). This includes all code used to generate, evaluate,

and visualize the map.
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