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SUMMARY 

Gene regulatory divergence between species can result from cis-acting local changes to regulatory 
element DNA sequences or global trans-acting changes to the regulatory environment. Understanding 
how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-
acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent 
regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-
seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans 
changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and 
function. We further identify differentially expressed transcription factors that underlie >50% of trans 
differences and trace how cis changes can produce cascades of trans changes. Overall, we find that 
most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role 
for trans divergence—alone and together with cis changes—to regulatory differences between species. 
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INTRODUCTION 

Phenotypic divergence between closely related species is driven primarily by non-coding mutations that 
alter gene expression, rather than protein structure or function.1-7 Gene expression changes can result 
from divergence in 1) cis, where DNA mutations alter local regulatory element activity, or 2) trans, 
where changes alter the abundance or activity of transcriptional regulators.8,9 These two modes of 
change have different mechanisms and scopes of effects on gene expression outputs. Each cis change 
influences a single regulatory element and its immediate local targets, while a trans change globally 
influences many regulatory elements and their gene targets. Thus, determining the respective 
contributions of cis versus trans changes to between-species gene expression differences is key to 
understanding the mechanisms that generate phenotypic divergence. Furthermore, because gene 
regulatory variants in humans are often associated with disease phenotypes, understanding these 
mechanisms will facilitate interpretation of genetic variation on disease. 

Cis and trans changes are difficult to study independently because cellular environment and genomic 
sequence are inherently linked within endogenous settings. Previous studies have developed different 
approaches largely focused on gene expression levels to attempt to disentangle cis and trans 
mechanisms of gene regulatory evolution.8,10-28 Overall, these studies have yielded a complex picture of 
the roles of cis and trans changes in different settings, but they generally argue that cis changes drive 
most divergence in gene expression between closely-related species. 

Gene expression is driven by regulatory element activity; thus, to gain a better understanding of the 
molecular mechanisms underlying gene regulatory evolution, it is necessary to investigate cis and trans 
changes at the regulatory element level. To directly identify cis differences, several recent studies have 
compared the regulatory activity of homologous sequences between closely related species within a 
common cellular environment.29-32 By controlling the cellular environment, the regulatory element 
activity differences identified by these studies must be the result of changes in cis (i.e., sequence).  

In contrast, only a handful of studies have directly tested the contributions of trans changes to 
regulatory element activity between species by comparing regulatory activity of the same sequences 
across species-specific cellular environments.33-35 Collectively, these studies conclude that trans 
changes to regulatory element function occur less frequently than cis changes and suggest that cis-
variation primarily drives divergent regulatory element activity between closely related species.36 One 
recent study comparing regulatory element activity in human and mouse embryonic stem cells reported 
~70% of activity differences were due to changes in cis.34 However, this study considered small 
(~1,600), pre-selected subsets of regulatory elements, and as a result, a comprehensive and unbiased 
survey of cis and trans contributions to global gene regulatory divergence remains a key gap in 
understanding mechanisms of gene regulatory evolution. 

In this study, we develop a comparative ATAC-STARR-seq framework to comprehensively dissect cis 
and trans contributions to regulatory element divergence between species. ATAC-STARR-seq captures 
almost all chromatin accessible DNA fragments and assays them for regulatory activity. Because we 
create a reporter plasmid library separate from performing the reporter assay, our approach decouples 
sequence from cellular environment. Thus, sequences from a species of interest can be tested for 
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activity within any chosen cellular environment. This allows us to systematically measure the effect of 
homologous sequence differences while controlling the cellular environment and vice versa.  

Our approach expands the scope of analysis from a few thousand regulatory elements to ~100,000 
regulatory elements genome-wide without the need for prior knowledge of regulatory potential.37,38 
Applying ATAC-STARR-seq to human and rhesus macaque lymphoblastoid cell lines (LCLs), we 
discover that cis and trans changes contribute to regulatory elements with divergent activity at similar 
frequencies, which contrasts with previous smaller studies that found cis changes drive most gene 
regulatory variation between species. We show that cis divergent elements are enriched for accelerated 
substitution rates and variants that influence gene expression in human populations, while trans 
divergent elements are enriched for footprints of differentially expressed transcription factors (TFs) that 
affect multiple gene regulatory loci. Furthermore, we find that the activity of most species-specific 
regulatory elements diverged in both cis and trans between human and macaque LCLs. These cis & 
trans regions are characterized by enrichment for specific transposable element sub-families harboring 
distinct TF binding footprints in humans. Finally, we illustrate how knowledge of mechanisms of 
regulatory divergence enriches interpretation of human variation and gene regulatory networks. By 
leveraging new technology to evaluate mechanisms of regulatory element divergence genome-wide, 
our study highlights the interplay between cis and trans changes on gene regulation and reveals a 
central role for trans-regulatory divergence in driving gene regulatory evolution.  

RESULTS 

Comparative ATAC-STARR-seq produces a multi-layered view of human and macaque gene 
regulatory divergence 

We applied ATAC-STARR-seq37 to assay the regulatory landscape of LCLs between humans and 
macaques39-41 (GM12878 vs. LCL8664; Figure 1A,B). ATAC-STARR-seq enables genome-wide 
measurement of chromatin accessibility, TF occupancy, and regulatory element activity, which is the 
ability of a DNA sequence to drive transcription (Figure 1, S1). For each experimental condition, we 
performed three replicates and obtained both reporter RNA and successfully transfected plasmid DNA 
samples for each replicate. In all conditions, DNA input libraries were highly complex with estimated 
sizes ranging between 31-54 million DNA sequences (Figure S1A). Both reporter RNA and plasmid 
DNA sequencing data were reproducible across the three replicates (Figure S1B; Pearson r2: 0.97-
0.99).  

We first determined accessibility peaks using the sequence reads obtained from the input DNA 
libraries, as previously described.37 Previous studies have investigated regions of differential chromatin 
accessibility in primate LCLs and other tissues,42-45 and consistent with these results, most chromatin 
accessibility peaks identified between the human and macaque genomes (59,144, 67%) is species-
specific, while 29,531 (33%) peaks had shared accessibility between species (Figure 1C). As expected, 
we find that divergent accessibility peaks are distally located and enriched for cell-type relevant 
functions (Figure 1D, S1C-G).  

Pinpointing the mechanisms underlying divergent activity requires that regulatory element DNA be 
captured from and tested in both species. Therefore, we analyzed shared accessible chromatin peaks 
so that both the human and macaque homologs were assayed. We quantified regulatory activity in four 
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conditions: human DNA in human cells (HH), human DNA in macaque cells (HM), macaque DNA in 
human cells (MH), and macaque DNA in macaque cells (MM) (Figure 1B). By comparing activity levels 
of orthologous sequences in these four settings, we can dissect whether cis changes, trans changes, or 
both have occurred in every single element tested. Altogether, this produces an integrated, high-
resolution quantification of accessibility, TF occupancy, and regulatory activity at both conserved and 
divergent regulatory elements between human and macaque LCLs (Figure 1E). 

Unlike in differential RNA expression analysis, it was necessary to both identify regions of interest and 
estimate their activity prior to any condition-specific comparison. To do this, we divided the 29,531 
shared accessible peaks into sliding bins and retained bins with 1:1 orthology between human and 
macaque. We called activity for each bin using replicates to determine p-values for activity in each 
condition and collapsed overlapping bins with consistent activity. This yielded a set of robust active 
regions for each condition (Figure S2A,B, Methods). Next, we directly compared active regions 
between the four conditions. We used a rank-based comparison scheme to account for power 
differences that would affect significance thresholds, assuming that each condition has similar numbers 
of active regions within shared accessible chromatin. We compared results at several rank thresholds 
corresponding to different false discovery rate (FDR) thresholds and we observed similar patterns in the 
divergent activity calls between conditions at all thresholds considered (Figure S2C,D). Thus, we focus 
in the main text on a rank threshold of 10,000 active regions per condition corresponding to an FDR 
range of 0.026-0.11. The condition-specific regions were similarly distributed across the genome, with 
marginal differences in genomic feature content (Figure 2A). 

Cis and trans gene regulatory divergence occur at similar frequencies 

We first tested the conservation of regulatory activity between “native states” by comparing human DNA 
in human cells (HH) and macaque DNA in macaque cells (MM) (Figure 2B). Of the top ~10,000 regions 
considered, 3,034 (18%) regions have conserved activity, 6,922 (41%) regions were active only in the 
HH state and 6,941 (41%) were active only in the MM state (Figure 2B,C). The overlap between HH 
and MM active regions was significantly greater than expected (Figure S2E; p < 2.2e-16), and the 
divergent activity calls are supported by clear differences in ATAC-STARR-seq regulatory activity signal 
between HH and MM (Figure 2B). This indicates that many active regulatory sequences with shared 
accessibility have divergent activity, challenging the widely held assumption that conserved chromatin 
accessibility signifies conserved regulatory activity. 

To determine the contribution of cis and trans changes to the differentially active regulatory regions, we 
compared their native activity to the corresponding non-native contexts—i.e., human DNA in the rhesus 
cellular environment (HM) and rhesus DNA in the human cellular environment (MH) (Figure 2D). We 
define cis changes as cases when sequence orthologs are tested in the same cellular environment but 
result in activity differences, implying that DNA variation contributes to regulatory activity differences. 
Conversely, we define trans changes as cases when a single sequence tested in different cellular 
environments results in activity differences, suggesting cellular environment changes contribute to the 
activity difference. 

As expected, cis changes contributed to a large proportion of human-specific active regions (83%; 
5,745). For these regulatory elements, the human DNA sequence was active in the human cellular 
environment, but the macaque sequence was inactive in both the macaque and human cells (Figure 
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2E). Likewise, 73% of macaque-specific active regions (5,034) diverged due to changes in cis (Figure 
2F).  

Surprisingly, similar proportions of human-specific active regions (79%; 5,443) were differentially active 
due to changes in trans, i.e., their DNA sequences were not active when assayed in the macaque 
cellular environment (Figure 2G). Likewise, 74% of macaque-specific active regions (5,165) were 
differentially active due to trans changes (Figure 2H). This was unexpected based on findings from 
previous smaller-scale studies that cis changes contribute to a greater number of differentially active 
regions than trans changes.33-35 

Collectively, these data demonstrate that trans changes to regulatory element activity occur as 
frequently as cis changes between human and macaque LCLs, indicating that trans changes in cellular 
environments have widespread impact on species-specific gene regulatory activity. These 
classifications are supported by clear qualitative differences in ATAC-STARR-seq regulatory activity 
signal between conditions (Figure 2E-H). We also observe equivalent proportions of cis and trans 
differences in activity when we vary our threshold for calling activity, indicating the relative abundance 
of cis and trans divergence is not sensitive to the threshold used (Figure S2C,D).  

Most species-specific regulatory differences are driven by changes in both cis and trans 

Because cis changes and trans changes each contribute to the differential activity of many divergent 
active regulatory regions, we quantified how often they occur together in the same DNA regulatory 
element. Unexpectedly, we found that 70% of the human specific active regions (4,631) and 64% of the 
macaque specific active regions (3,994) displayed both cis and trans divergence (Figure 3A-D). 
Accordingly, we classified these regulatory regions as cis & trans, and regions only divergent in cis or 
trans as cis only and trans only, respectively. With these definitions, the cis & trans class accounts for 
67.5% of all divergent active regions (human and macaque combined), whereas cis only and trans only 
represent about 17% and 15.5%, respectively. Thus, the regions with divergent regulatory activity 
between humans and macaques predominantly exhibit functional changes in both sequence and 
cellular environment, suggesting that cis and trans mechanisms jointly contributed to the evolution of 
individual gene regulatory elements.  

Different mechanisms of regulatory divergence exhibit different TF motifs and locations within 
nucleosome-free regions  

Given the prevalence of these distinct modes of regulatory divergence, we investigated the genomic 
context and functional annotations of the divergent region classes (cis only, trans only, cis & trans, and 
conserved active). Functional genomic data for the human GM12878 cell line is readily available, so we 
focused on the human-specific active regions unless otherwise specified. While all three divergent 
classes consisted of more promoter-distal regions than the conserved active class, a substantially 
higher proportion of trans only regions overlapped promoter-distal annotations than either cis only or cis 
& trans regions (Figure 3E), consistent with recent results on trans changes between human and 
mouse.34 Gene ontology annotations of genes near each region class revealed that all three cis/trans 
region classes were enriched for genes involved in cell-type specific pathways such as immune effector 
process and regulation of immune response. However, several terms distinguished the three divergent 
region classes, such as type I interferon signaling for the trans only regions and chromatin silencing for 
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the cis only regions (Figure S3A). Conserved active regions were enriched for nearby genes involved in 
housekeeping pathways, such as RNA processing and translation. Together, this indicates that genes 
involved in different functional pathways may be prone to different kinds of regulatory divergence.  

Human-specific cis only, trans only, and cis & trans regions also displayed different patterns of histone 
modifications, including histone H3 lysine 27 acetylation (H3K27ac), histone H3 lysine 4 
monomethylation (H3K4me1), and histone H3 lysine 4 trimethylation (H3K4me3) (Figure 3F, S3B). 
Trans only regions showed greater H3K4me1 signal and less H3K4me3 signal than the other classes, 
and this is likely explained by the human-specific region class annotations, since the trans only class is 
more enriched for promoter-distal annotations than the cis only or cis & trans classes (Figure 3E). We 
also observed a bimodal distribution of histone signal for trans only regions but not the others. This 
suggests that trans only elements are generally located within the center of the nucleosome free region 
(NFR), while the others are more common on the NFR periphery. To test this, we plotted the distance 
between region centers and the NFR center—the summit of the accessible chromatin peak (Figure 3G). 
We used GM12878 H3K27ac ChIP-seq signal to map the -1 and +1 nucleosomes (Figure S3C) and 
phyloP signal to identify the most conserved portion of the NFR (Figure S3D). As predicted, trans only 
regions are more often at the center of the NFR, while the cis only and cis & trans regions are more 
frequently located at the edges of the NFR. This means that trans only changes are more likely to occur 
at the center of NFRs, where there is stronger evolutionary constraint. Thus, evolutionary constraint at 
NFR centers may prevent cis changes, so trans changes could be required to drive differential activity 
of these elements.  

TF binding differences likely drive activity differences between cis, trans, and cis & trans region classes. 
TF motif enrichment analysis revealed distinct TF motifs that distinguish regulatory regions both by the 
mechanism of gene regulatory divergence and species-specificity (Figure 3H). For example, human-
specific trans only regions are enriched for IRF family TFs while macaque-specific trans only regions 
are enriched for the ATF4 TF, among others. Furthermore, IRF TFs are not enriched in human-specific 
cis & trans regions, suggesting the TFs that drive trans divergence for trans only regions are different 
from those that drive the cis & trans regions.   

Key immune-related transcriptional regulators are differentially expressed between human and 
macaque LCLs 

Trans regulatory divergence results from differences in the cellular environment, including differences in 
gene expression. To explore the mechanisms underlying the striking number of trans divergent regions 
(10,611 trans only and cis & trans combined), we performed RNA sequencing (RNA-seq) on both 
GM12878 and LCL8664 cell lines. The human and macaque LCL expression profiles cluster together 
and away from other human and macaque tissues (Figure S4A). Both LCLs also cluster closely with 
expression profiles from bulk, naïve, and memory B cells to the exclusion of other hematopoietic 
lineages (Figure S4B), suggesting they are transcriptionally similar to one another and to primary B 
cells.46 We also confirmed that waiting 24 hours after transfection to collect data resulted in minimal, if 
any, detection of plasmid-induced interferon-stimulated gene expression (Figure S4C-E). Thus, the 
human and macaque LCLs closely reflect primary B cells, and their transcriptional differences are likely 
the result of regulatory divergence between human and macaque. 
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We identified 2,975 differentially expressed genes with 1,505 upregulated in human and 1,470 
upregulated in macaque (Figure 4A; human-specific log2(fold-change) > 2; macaque-specific log2(fold-
change) < -2; both padj < 0.001). The human-specific genes were enriched for immune pathways, like 
interferon signaling and interleukin-10 signaling; while macaque-specific genes were enriched for 
extracellular matrix pathways, like collagen formation (Figure 4B). This indicates that, although these 
cell lines have broadly similar expression profiles (Spearman’s ρ = 0.85; Figure S4F), they display 
specific expression differences that could drive the trans-regulatory environment effects we observe. 
Moreover, these gene expression differences are likely due to species differences, and not cell line 
immortalization (Figure S4B) or plasmid-induced interferon-stimulated gene expression (Figure S4C-E) 
artifacts. 

Trans only regions are bound by differentially expressed TFs 

The differential enrichment of IRF family motifs in human-specific trans only regions (Figure 3H) as well 
as the enrichment of interferon signaling genes in human-specific differentially expressed genes (Figure 
4B) suggests a potential link between these differentially expressed TFs and the observed trans-
divergent regions. To explore this hypothesis, we used TF footprints determined from ATAC-STARR-
seq (Figure S1C) to test for TF footprint enrichment in the human-specific trans only and macaque-
specific trans only regions. Indeed, we identified many TFs that are both significantly differentially 
expressed and enriched for binding in species-specific trans only regions; we define these TFs as 
“putative trans regulators” (Figure 4C, S4G). These putative trans regulators include several members 
of the IRF family (IRF4/7/8) that are markedly upregulated in human compared to macaque cells and 
are enriched for footprints in human-specific trans only regions (Figure 4C,D). Moreover, 18.7% of 
human-specific trans only regions were found to contain a TF footprint for one of these IRF family 
members that are canonically involved in innate immune responses47 (Figure 4D).  

In total, the putative trans regulators we identified bind 37.1% of human specific trans only regions and 
11.5% of macaque specific trans only regions. This highlights how changes to the expression of a few 
TFs can affect activity at a substantial number of the divergent DNA regulatory elements in a cell 
(Figure 4D,S4H). The remaining trans only regions may be explained by TFs that did not meet our 
putative trans regulator criteria, which included stringent significance thresholds and a 1:1 ortholog 
requirement in the comparative RNA-seq workflow. It is also likely that other mechanisms contribute to 
differences in the trans-regulatory environment, such as previously described species-specific 
differences in post-transcriptional and post-translational regulation of TFs.48,49 Notwithstanding, this 
data argues that the differential expression of only a handful of transcription factors drives a substantial 
amount of the trans-regulatory divergence observed. 

Trans only regions are more conserved than cis only regions 

Because trans changes result from differences in the cellular environment, while cis changes result 
from functional sequence differences, we hypothesized that DNA sequences in trans only regions 
would be more conserved than sequences in cis only regions. Supporting this hypothesis, both trans 
only and cis only regions are enriched for primate PhastCons conserved elements compared to 
expected background distributions (p = 1.4e-11 and 9.1e-4, respectively), but trans only regions are 
more enriched than cis only regions (Figure 5A; trans only odds ratio (OR) = 1.5; cis only OR = 1.2). In 
contrast, cis & trans regions are significantly depleted of conserved elements (Figure 5A; OR = 0.67, p 
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= 1.1e-30). As expected, regulatory sequences with conserved activity between human and macaque 
had the strongest enrichment for conserved elements (Figure S5A; p = 8.1e-157, OR = 3.1).  

Accelerated substitution rates compared to neutral expectations can indicate shifts in sequence 
constraint, possibly resulting from positive selection.50-52 Both cis only and trans only elements are 
significantly enriched for elements with higher-than-expected substitution rates (Figure 5B; S5B; cis 
only p=4.9e-3; trans only p=4.7e-2), but as expected from their sequence-based mechanism of 
divergence, cis only regions are more enriched than trans only regions (cis only OR=1.4; trans only 
OR=1.3). Cis & trans elements showed no significant difference in substitution rates compared to 
background expectation (p=0.3). Overall sequence identity was similar across cis/trans groups, ruling 
out the possibility of systematic differences in the substitution rates of these regions underlying activity 
differences (Figure S5C).  

Next, we investigated evolutionary origins of the regions in the divergent classes.53,54 All region sets are 
enriched for ancient sequences—from the placental common ancestor and older—so it is unlikely that 
differences in conservation are due to differences in sequence age (Figure S5D-E). Each region set is 
enriched for sequences with multiple ancestral origins, and cis & trans regions are the most significantly 
enriched (Figure 5C; conserved active p =3.6e-27; cis only p =7.9e-43; trans only p = 1.3e-56; cis & 
trans p = 4.6e-233).  

Altogether, cis only and trans only regions both exhibit extremes of sequence conservation, divergence, 
and origin, as expected for sets of functional sequences in which some are experiencing negative 
selection and others positive selection. However, the sequences with cis only changes have more 
evidence of high substitution rates while trans only sequences are more enriched for conservation. This 
is consistent with their respective modes of divergence—sequence vs. cell environment. The fact that 
elements with cis & trans changes show substantially less evidence for selection suggests that they 
may arise from alternative mechanisms and have different functional roles.  

Cis & trans regions are enriched for SINE/Alu transposable elements 

Transposable element-derived sequence (TEDS) insertions are a source of raw sequence that often 
develops novel, species-specific regulatory functions.55-59 Thus, we investigated whether TEDS 
contribute to the divergent regulatory region classes, specifically in the less-conserved cis & trans 
elements. Overall, each class is depleted of TEDSs compared with genome-wide expectation (Figure 
S5F), consistent with previous findings that all gene regulatory sequences are depleted of TEDS.53,60 
However, comparing within the regulatory element classes, cis & trans regions were enriched for TEDS 
compared to the other categories (Figure 5D; cis & trans OR = 1.14, p =9.7e-4; trans only OR = 0.86, 
p= 0.02; cis only OR = 0.91, p=0.08) suggesting that cis & trans elements more frequently originate 
from TEDS. Several TEDS families were uniquely enriched in cis & trans regions, most notably 
SINE/Alu and MIR derived sequences (Figure 5E, S5G-I). Additionally, SINE/Alu elements were more 
enriched in human-specific cis & trans regions compared to macaque-specific cis & trans regions 
(Figure S5H-I), suggesting that SINE/Alu derived sequence activity is more favorable in the human 
cellular environment.  

SINE/Alu elements are a common source for new DNA regulatory elements.61-63 These sequences 
might have provided proto-enhancers in the last common ancestor of humans and rhesus macaques, 
developing over time into species-specific regulatory elements that experienced both cis & trans 
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changes to obtain activity. The consensus AluSx sequence contains several sequences with high 
similarity to known TF binding sites (Figure 5F,G). Furthermore, TF footprinting analysis of cis & trans 
SINE/Alu elements (Figure 5H) provides strong evidence for the presence of TF binding, including the 
zinc-finger TFs, ZNF135, ZNF460, ZNF384, and PITX2, FOXD2, OTX2, RARG, and MEF2A. This 
demonstrates cis & trans regions are enriched for sequences derived from SINE/Alu elements and 
identifies several TFs that likely contributed to species-specific regulatory divergence. 

Cis only regions are enriched for human variants associated with gene expression 

Next, we explored the effects of genetic variation within human populations in the different regulatory 
divergence classes. First, we quantified enrichment for expression quantitative trait loci (eQTL) in 
regions with divergent activity, hypothesizing that variation in cis only and cis & trans regions would be 
more likely to associate with variable gene expression within humans.  

Cis only elements were significantly enriched for cis-eQTLs in EBV-transformed B cells from the GTEx 
consortium, while the other classes were not enriched for cis-eQTLs (Figure 6A; 1.6x fold-change, 
empirical p-value = 1e-4). Focusing on human-specific active elements, the difference between cis only 
and trans only regions is even more extreme (Figure 6A inset). This suggests that regulatory elements 
that experienced sequence-based evolutionary divergence between human and macaques are more 
likely to harbor variants that modulate gene expression among humans, while trans only regions are 
less likely to tolerate functional variants.  

We also evaluated enrichment for human genome-wide association study (GWAS) variants in divergent 
region classes. We selected immune and inflammatory traits from the UK Biobank (UKBB) where 
heritability had previously been observed in B cell gene regulatory loci.46 After removing HLA-
overlapping peaks, we observed modest enrichment in all region classes for GWAS variants across 17 
inflammatory and autoimmune traits with few differences between the classes (Figure S6A,B; empirical 
p-value <0.05).  

We were particularly interested to explore variants associated with viral hepatitis C, because humans 
and chimpanzees, but not macaques or other Old-World Monkeys, are susceptible.64 Human-specific 
trans only regions are significantly and specifically enriched for viral hepatitis C GWAS variants, while 
macaque-specific regions are not (Figure S6B). This suggests that trans-regulatory changes 
contributed to the ape-specific susceptibility to hepatitis C and that human genetic variants in the 
regions bound by these trans factors modulate susceptibility to infection. 

A human accelerated cis only element regulates NLRP1 expression and downstream trans 
changes 

Our approach can identify the causes of evolutionary divergence at regulatory elements and quantify 
the resulting phenotypic outcomes at both the molecular and organismal levels. To illustrate this, we 
analyzed a GTEx cis-eQTL (rs1805264) associated with NLRP1, MIS12, SCIMP, RABEP1, RPAIN, 
DERL2 expression variation across multiple tissues (Figure 6B, S6C).26 This locus overlaps a cis only 
region on chromosome 17 in the MIS12 promoter that shows accelerated evolution between human 
and macaque (99th percentile of human acceleration scores; phyloP = -2.89) suggesting the locus 
experienced positive selection (Figure 6C,D). To understand how variation in this cis only region 
evolved to produce human-specific regulation, we evaluated differential TF footprinting between the 
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human and rhesus macaque homologs. Human substitutions influenced binding site affinities for ZFX, 
ZNF460, NR2C2, EGR1, NRF1, and KLF15 transcription factors, which exclusively bind in human 
LCLs, as evidenced by differential footprinting (Figure 6E). Together, this indicates that human 
substitutions at this element created human-specific TF binding sites and human-specific cis only 
regulatory activity. This human-specific regulatory activity is then modulated by the cis-eQTL. 

Of the genes influenced by genetic variation in this locus, NLRP1 shows the highest human-specific 
differential expression between the two LCLs (Figure 6F). NLRP1 is a viral sensor, including for SARS-
CoV-2,65 and a core component of the pro-inflammatory signaling pathway. Thus, we hypothesize that 
variable NLRP1 expression may have substantial downstream effects on pro-inflammatory signaling 
that affects the trans-regulatory cellular environment.66-69 Indeed, the eQTL (rs1805264) is associated 
with human immune traits including higher platelet count and lymphocyte blood counts (Figure 6G). 
Together, this locus provides a key example of how a positively selected cis only region can affect 
expression of a target gene with potential to create substantial trans changes downstream, and, in turn, 
influence human-specific trait variation.  

A single substitution may drive differential expression of ETS1 by perturbing RUNX3 binding in 
macaques 

We demonstrate that differential expression of a small number of TFs can explain a substantial portion 
of the human-specific trans only regions observed (Figure 4), and that cis only regions can be a potent 
source of gene expression variation (Figure 6). These observations suggest that a small number of cis 
changes may ultimately lead to substantial trans changes if they act on genes, like TFs, that alter the 
cellular environment.8,9 To illustrate the ability of our approach to enable inference of these regulatory 
cascades, we identified a human-specific cis only region at a putative enhancer for ETS1, a trans 
regulator that is substantially more expressed in human LCLs and binds to >13% of human-specific 
trans only regions (Figure 4C,E and Figure 7A-C). The activity of this putative enhancer is supported by 
GM12878 H3K27ac signal and human B cell DNA hypomethylation.70,71 Furthermore, ETS1 is the 
closet gene to the DNA regulatory element and is contained within the same topologically associated 
domain (TAD) according to GM12878 Hi-C data (Figure 7C),72 so ETS1 is the likely target gene. Within 
this human-specific cis only region, we identified a macaque-specific substitution (TàC) that disrupts a 
RUNX3 motif, which is corroborated by the presence of a RUNX3 footprint detected in human but not 
macaque (Figure 7A). A GM12878 RUNX3 ChIP-seq peak also supports human TF binding at this 
locus.71 Furthermore, the functional relevance of this element is supported by two nearby SNPs, 
rs4262739 and rs4245080, which are eQTLs for ETS1 and have been associated with human trait 
variation including lymphocyte percentage.73,74 The ETS1 enhancer provides a powerful example of 
how a nucleotide substitution impacting the function of a single regulatory element leads to widespread 
changes in the activity of hundreds of regulatory elements across the genome. Altogether, these 
examples lead us to a model of how individual cis changes can ultimately generate substantial trans-
divergent regulatory activity between species (Figure 7D).  

DISCUSSION 

Here, we used a comparative ATAC-STARR-seq framework to directly identify differentially active DNA 
regulatory elements between human and rhesus macaque and to characterize their mechanisms of 
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divergence—changes in cis, in trans, or in both cis & trans. We observe that trans-regulatory 
divergence is common, despite previous work suggesting that cis changes drive most gene regulatory 
divergence between species. Moreover, we find that most divergent elements have both cis and trans 
differences in activity, indicating that divergent gene regulatory elements are often shaped by changes 
in both the homologous DNA sequence and the cellular environment.  

Cis only, trans only, and cis & trans region classes display unique characteristics 

We identify three classes of regulatory elements based on their mode of divergence: cis & trans, cis 
only, and trans only. We discovered unique functional and evolutionary characteristics that define these 
region classes. In summary, cis only regions are more enriched for high substitution rates than trans 
only regions, while trans only regions are more enriched for evolutionarily conserved sequences, which 
is consistent with the fact that mutations within the regulatory regions are necessary for divergent 
activity in cis, but not in trans. In contrast, cis & trans regions show less sequence constraint, but are 
enriched for complex genomic rearrangements and transposable element derived sequences (SINE/Alu 
elements, in particular) compared to cis only and trans only regions, indicating that many arose from 
mutations to transposable element sequences that were present in the last common ancestor of 
humans and rhesus macaques. We also identified distinct TF motif enrichments for each region class, 
which highlights how differential activity, and its mode of divergence depends on unique TFs. 
Altogether our characterization of the divergent region classes provides insight into the relationship 
between mode of regulatory divergence and the gene regulatory networks they act on, which remains a 
key gap in the field.8  

Trans-regulatory divergence is more extensive than previously recognized 

In this study, we discovered more trans-regulatory divergence than previously reported.8,9,33-36 Several 
differences in study design, experimental system, and scale may explain this apparent discordance. 
First previous work largely focused on gene expression rather than regulatory element activity as the 
functional output. Second, many previous studies have not been able to directly test for trans changes, 
and thus assumed that elements without cis changes were driven by trans changes. Thus, they would 
miss a large number of elements with evidence of both types of change. Third, the two recent studies 
that did directly evaluate cis and trans changes on regulatory element activity focused on more limited, 
pre-selected sets of regions.34,35 Whalen et al. reported that nearly all of 159 tested human accelerated 
regions (HARs) diverged in cis. This is concordant with our findings that many cis divergent elements 
have accelerated substitution rates and are more likely to have accelerated substitution rates than other 
elements. Furthermore, they focus on HARs, rare elements with extreme evolutionary pressures that do 
not represent most regulatory loci. Mattioli et al. compared human and mouse regulatory element 
homologs and discovered that more regions were divergent due to changes in cis (n=660) than 
changes in trans (n=293). The difference in the cis:trans ratio may be due to different sampling of the 
elements tested, but the longer evolutionary divergence between human and mouse compared to 
human and macaque may also contribute. As previously mentioned, cis changes have been proposed 
to increase with evolutionary divergence,8,13,21 so we would expect to detect more cis changes at further 
evolutionary distances. More work is needed to determine the modes of gene regulatory divergence 
over both longer and shorter evolutionary distances, as well as different cellular contexts.  
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Putative trans regulators drive a substantial amount of trans-regulatory divergence in our 
system 

To identify potential drivers of the trans regulatory divergence we observe, we defined “putative trans 
regulators” as a TF class that both display expression differences between species and bind to trans 
only regions as determined by TF footprinting. This revealed that a small number of key immune 
regulators, including ETS1, drive a substantial fraction of the human trans divergence we observed. 
This suggests that the differential expression of only a handful of transcription factors can drive a 
substantial amount of the trans-regulatory divergence. 

We further showed that one of the putative trans regulators, ETS1, is likely regulated by a human-
specific cis only region and discovered a key substitution in macaques that perturbs a RUNX3 TF motif. 
This is evidence of how a single substitution might influence the differential activity of a whole network 
of gene regulatory elements and species-specific immune-related traits, like Hepatitis C susceptibility in 
humans but not rhesus macaques. Indeed, we observed that only the human-specific trans only regions 
were highly enriched for Viral Hepatitis C associated variants. Altogether, our data will enable further 
characterization of putative trans regulators and identification of specific loci like the ETS1 regulatory 
element that may contribute to human-specific phenotypes.  

A model of how cis and trans changes jointly drive divergent regulatory element activity  

Cis & trans divergent regions acquired a change in cis and a change in trans during their evolution from 
the most recent common ancestor (MRCA) between humans and rhesus macaques (Figure 7E). We 
speculate that perturbations in trans are often likely to occur prior to cis. Once the relevant trans factors 
no longer bind, some elements will accumulate enough sequence variation to result in cis changes as 
well. Several lines of evidence from previous reports and our study support this hypothesis. For 
example, cis changes have been proposed to accumulate with greater evolutionary divergence 
whereas trans changes are favored short-term.8,13,21 This is likely because trans changes can change 
many regulatory region activities at once but may be more deleterious than cis changes.75 In this way, 
more significant phenotypic changes may be driven by changes to the trans-regulatory environment, 
but with a long-term fitness cost that can be ameliorated by local and precise cis changes to DNA 
regulatory elements.  

Limitations of the Study 

Several limitations of our study must be considered when interpreting our results. First, we only directly 
assay one genotype per species and infer evolutionary divergence from these models. While it would 
be ideal to evaluate additional genotypes for each species,76 this approach was necessary for several 
reasons. First, there are few non-human primate cell lines available to assay. Second, the 
comprehensive design of our comparative ATAC-STARR-seq approach is prohibitive for testing and 
interpreting activity variation across multiple genotypes and across multiple cellular environments.   

Second, for experimental reasons, we leverage immortalized cell lines, whose cellular biology may not 
completely mirror the biology of primary B cells. The immortalization strategies differ for human and 
rhesus B cells. Specifically, the human B cell line was immortalized using Epstein-Barr Virus (EBV);40,41 
whereas the rhesus cell line was immortalized in vivo by a rhesus lymphocryptovirus (rhLCV) related to 
EBV—so-called Rhesus Epstein-Barr Virus (RheEBV). 39,77,78 Although the viral EBNA2 gene, which 
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drives transcription of many gene targets in EBV-infected cells,79 is homologous between EBV and 
rhLCV, host-restriction and co-evolutionary pressures may exaggerate many of our results. We 
envision that this could be avoided in future studies by using primate induced Pluripotent Stem Cell 
(iPSC) lines.80 Beyond these possible confounders, our analysis of publicly available RNA-seq datasets 
shows that, at least transcriptionally, the two cell lines are highly similar both to each other and to 
human primary B cells (Figure S4A,B).   

Despite the greater scale of the assay, ATAC-STARR-seq lacks the within-sample reproducibility of 
synthetic MPRA approaches that take dozens of measurements for each sequence assayed.81 For this 
reason, we cannot reliably compare effect sizes of activity. Instead, we binarize activity measures by 
applying significance thresholds to call active regions, which we then compare between conditions. 
Future analytical approaches may incorporate strategies that enable direct comparisons of activity. This 
would allow investigation of additional hypotheses, including proposed cis/trans compensation 
mechanisms on regulatory elements.34 In this way, we interpret cis & trans regions as individual 
regulatory regions where both species-specific DNA and species-specific environment are necessary to 
observe regulatory activity. We caution against interpreting compensatory or directional mechanisms on 
individual regulatory element activity from our data. However, while we did not explore how multiple 
regulatory elements control gene expression in a directional or compensatory fashion, this would be 
possible with our data, but validation studies that place gene regulatory elements in their endogenous 
context would be needed.  

Concluding Remarks 

We find that trans changes contribute to DNA regulatory element activity divergence between human 
and macaque nearly as often as cis changes. Moreover, we observed that both cis and trans changes 
affect most divergent regulatory elements. These findings enabled by our comparative ATAC-STARR-
seq framework highlight an underappreciated role for the cellular environment in driving gene regulatory 
changes. We envision that our comparative strategy will be useful in future studies for mapping gene 
regulatory divergence between different species and across different cell types within the same species 
to agnostically determine the locations and roles of cis and trans divergence on gene regulatory 
function. 
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FIGURE LEGENDS 

Figure 1: Comparative ATAC-STARR-seq produces a multi-layered view of human and macaque 
gene regulatory divergence. (A) A schematic of the ATAC-STARR-seq methodology. Accessible DNA 
fragments are isolated from cells and subsequently cloned into a self-transcribing reporter vector 
plasmid, which are then electroporated into cells and assayed for regulatory activity by harvesting and 
sequencing Reporter RNAs and input plasmid DNA. (B) Our comparative ATAC-STARR-seq strategy to 
assay human and macaque genomes in both cellular environments. ATAC-STARR-seq plasmid 
libraries were independently generated for GM12878 and LCL8664 cell lines and then assayed 
separately in either cellular context. Our comparative approach provides measures in chromatin 
accessibility and transcription factor (TF) footprinting for both genomes as well as regulatory activity for 
the four experimental conditions: human DNA in human cells (HH), human DNA in macaque cells (HM), 
macaque DNA in human cells (MH) and macaque DNA in macaque cells (MM). (C) Euler plot 
representing the number of species-specific and shared accessibility peaks identified from ATAC-
STARR-seq data. (D) Distribution of genomic annotations for species-specific and shared accessibility 
peaks based on the distance to nearest transcription start site. (E) Select genomic loci at hg38 
coordinates representing conserved or differentially active regions of the two genomes. Tracks 
represent human and rhesus macaque accessibility, TF footprints for SPI1 and NFKB1, and regulatory 
activity measures for HH, HM, MH, MM. See also Figure S1. 

Figure 2: Cis and trans gene regulatory divergence occur at similar frequencies. (A) Distribution 
of genomic annotations for the ~10,000 active regions called in each condition based on the distance to 
nearest transcription start site. (B) Comparison between the human and macaque native states to 
reveal conserved and species-specific active regions. (C) The percentage of active regions with 
conserved and divergent activity. (D) Cartoon depicting the four conditions tested and how they are 
compared to identify cis and trans divergent regions. (E) Human-specific cis divergent regions 
determined by comparing human-specific active regions with the MH condition. Regions without MH 
activity were called cis divergent regions. (F) Macaque-specific cis divergent regions determined by 
comparing human-specific active regions with the HM condition. (G) Human-specific trans divergent 
regions determined by comparing human-specific active regions with the HM condition. (H) Macaque-
specific trans divergent regions determined by comparing human-specific active regions with the HM 
condition. The heatmaps display ATAC-STARR-seq activity values for the specified region sets and 
experimental conditions. See also Figure S2. 

Figure 3: Most species-specific regulatory differences are driven by changes in both cis and 
trans. (A,B) Comparison of ATAC-STARR-seq activity values across all conditions for (A) human-
specific and (B) macaque-specific cis and trans divergent regions. Cis only, trans only, and cis & trans 
regions display activity signals consistent with their calls. (C,D) Euler plots of the cis only, trans only, 
and cis & trans classifications for (C) human-specific and (D) macaque-specific active regions. (E) 
Distribution of genomic annotations for human-specific cis only, trans only, cis & trans, and conserved 
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active regions. (F) Profile plots of ENCODE GM12878 ChIP-seq signal for H3K27ac, H3K4me1, and 
H3K4me3 histone modifications for the human-specific region classes. (G) Density plot of the distances 
between region center and accessible chromatin (ChrAcc) peak summits for human-specific cis only, 
trans only, cis & trans, and conserved active regions. The +1 and -1 histones are estimated with purple 
dashed lines by the ENCODE GM12878 H3K27ac signal summits and the conserved portion of the 
ChrAcc peaks is estimated with a grey box by the 17-way PhyloP score, see Figure S3C,D. (H) 
Clustered heatmap of TF motif enrichments for the combined or species separated cis only, trans only, 
cis & trans regions. Values are the z-score distributions of p-values, normalized across rows. Only the 
top 15 motifs for each region set were chosen for plotting. See also Figure S3. 

Figure 4: Trans only regions are bound by differentially expressed TFs. (A) Volcano plot of 
differential expression analysis between GM12878 (human) and LCL8664 (macaque) cell lines. Point 
color represents genes upregulated in human (blue) or macaque (orange). Thresholds were log2 fold-
change > | 2 | and padj < 0.001. (B) Enrichments of differentially expressed gene sets for Reactome 
pathways. Only the top 5 terms in each were plotted. (C) Enrichment of human-specific trans only 
regions for TF footprints stratified by the differential expression of the TF. Text is only shown for the 
most differentially expressed and enriched TFs. See Figure S4G for macaque trans only results. (D) 
Percentage of human-specific trans only regions that overlap a given footprint. TFs within the same 
motif archetype were merged before determining the number of overlaps. See Figure S4H for macaque 
trans only results. See also Figure S4.  

Figure 5: Cis only, trans only, and cis & trans regions have different degrees of conservation, 
acceleration, and transposable element enrichment. (A-C) Enrichments of cis only, trans only, and 
cis & trans regions for (A) 30-way PhastCons elements, (B) human accelerated elements (defined as 
human-rhesus PhyloP < -1), and (C) sequences with multiple ancestral origins compared to an 
expected background. (D) Enrichment of divergent regions for transposable element (TE) overlap 
compared to other active regions. For all bar charts, the Fisher’s Exact Test odds ratio (OR) is plotted 
with 95% confidence intervals, which were estimated from 10,000 bootstraps. Windows were log2-
scaled. Asterisks indicate a 5% FDR p-value < 0.05. (E) Enrichments of cis only, trans only, and cis & 
trans regions for subfamilies of TEs compared to an expected background. (F) The AluSx consensus 
sequence with TF binding sites for the TFs with enriched footprints. (G) Jaspar motifs of the relevant 
TFs. (H) Enrichments of SINE/Alu overlapping cis & trans regions for human TF footprints compared to 
an expected background. For the scatter plots, text is only shown for the most enriched subfamilies/TFs 
and point size represents the number of overlaps observed. See also Figure S5. 

Figure 6: A human accelerated cis only element regulates NLRP1 expression. (A) Enrichments of 
cis only, trans only, and cis & trans regions for EBV-transformed B cell eQTLs. The median fold-change 
compared to the expected background is plotted with 95% confidence intervals, which were estimated 
from 10,000 bootstraps. The inset in represents EBV-transformed B cell eQTLs enrichments for human-
specific cis only, trans only, cis & trans regions. (B) Normalized expression scores of NLRP1 for the 
three possible genotypes of rs1805264. (C) PhyloP score distribution for cis only and expected shuffled 
regions compared to the PhyloP score of the chr17: 5,486,721-5,486,861 locus (red dotted line). (D) 
Genomic locus on Chr17 with a zoomed-in view of a multi-way sequence alignment for a highly 
accelerated human-specific cis only element. (E) Differential TF footprints between human and 
macaque coincide with human-accelerated substitutions. (F) Differential expression of rs1805462-
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associated eQTL genes between human and macaque LCLs. (G) PheWAS associations for rs1805462 
with variation in quantitative blood traits. See also Figure S6. 

Figure 7: A single substitution may drive differential expression of ETS1 by perturbing RUNX3 
binding in macaques. (A) Genomic locus of a human-specific cis only regions within a putative ETS1 
enhancer. Public tracks for GM12878 H3K27ac and Human B cell DNA methylation corroborate this 
region as a putative enhancer. The first zoomed-in view of the locus shows a RUNX3 footprint present 
in human cells but not macaque cells. Nearby SNPs, rs4262739 and rs4245080, are associated with 
human trait variation. A further zoomed-in view of the footprint with a multi-species sequence alignment 
between human, chimpanzee, and macaque to reveal a macaque-specific substitution that perturbs an 
important nucleotide of the RUNX3 binding motif. (B) ETS1 and RUNX3 transcript per million (TPM) 
values for each replicate in human and macaque cells. (C) Hi-C data browser view of the ETS1 locus in 
GM12878 cells. Vertical dashed line represents the relative location of the putative ETS1 enhancer. (D) 
Model of how cis changes can become trans changes for other loci via TF expression/activity changes. 
First, cis changes alter the DNA sequence of a regulatory element to alter the affinity of TFs to the 
locus. This causes either enhancer activity loss or gain, based on the ancestral activity state of the 
enhancer. Alteration of enhancer activity, in turn, modifies the expression of target genes. If the target 
gene is a transcriptional regulator, the cis change would, therefore, also alter the cellular environment 
and become a trans change for other regulatory regions. (E) Model of how regions divergent in both cis 
& trans jointly drive differential regulatory element activity.  

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1: Differential accessibility analysis, TF footprinting, and ATAC-STARR-seq quality 
control. (A) Estimated sequence library complexities from Picard for each replicate of each condition. 
This represents the total number of non-redundant sequences contained within the library. (B) Pearson 
correlation plots between replicates for both RNA and DNA samples for each condition. (C) 5 
representative examples of TF footprinting in human and macaque LCLs from ATAC-STARR-seq data. 
A total of 746 JASPAR motifs were analyzed to identify bound (black line) and unbound (grey line) 
motifs classified by Tn5 cut-count distributions at the motifs. Bound motifs are also called footprints. (D-
E) TF motif enrichment analysis results for either (D) human-specific or (E) macaque-specific 
accessible regions. (F-G) Reactome pathway enrichment analysis of nearest neighbor genes for either 
(F) human-specific or (G) macaque-specific accessible regions. Only the top 8 terms are displayed. 
Related to figure 1.  

Figure S2: Support of differential activity calls. (A) A schematic of the activity calling approach. 
Exact bin counts are provided to show how many bins were lost due to filtering steps. (B) Comparison 
of ATAC-STARR-seq activity values for each replicate of each condition for both all bins called active 
and for a random subsample of inactive bins. (C) Lollipop chart representing the Benjamini-Hochberg 
adjusted p-values applied to obtain the various number of regions for each condition. (D) The number 
of regions classified into each region set based on the number of active regions called per condition. 
(E) Observed vs. expected analysis of overlaps between the region sets compared in Figure 2B. Red 
line represents the observed, while blue density plot represents the expected distribution of overlaps for 
1000 random shuffles within shared accessible chromatin. Related to Figure 2.  
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Figure S3: Additional functional characteristics of cis only, trans only, cis & trans, and 
conserved active region sets. (A) Gene ontology (GO) enrichments for the putative target genes of 
conserved active, cis only, trans only, and cis & trans regions. Only the top 10 terms are shown for 
each. (B) Heatmaps of ENCODE GM12878 ChIP-seq signal for H3K27ac, H3K4me1, and H3K4me3 
histone modifications for each human-specific region class. This is summarized by the profile plots in 
Figure 3F. (C) H3K27ac and (D) PhyloP signal distributions from accessible chromatin peak centers to 
define the +1/-1 nucleosomes and conserved region shown in Figure 3G. Related to Figure 3. 

Figure S4: GM12878 and LCL8664 cells are transcriptionally similar to each other and primary B 
cells. (A) Principal component analysis (PCA) comparing our data with publicly available human and 
macaque RNA-seq datasets for heart, liver, lung, kidney and LCL tissue types. (B) PCA of our data with 
publicly available human primary immune cell RNA-seq datasets. (C) Volcano plot of differential 
expression analysis between GM12878 RNA-seq datasets with and without transfection of plasmid 
DNA 24hrs before collection; without plasmid DNA samples are from ENCODE. Point color represents 
genes more expressed in the with-plasmid condition (blue) or without-plasmid condition (red). 
Thresholds were log2 fold-change > | 2 | and padj < 0.001. (D-E) Reactome pathway enrichment of 
differentially expressed gene sets, either (D) without DNA enriched or (E) with DNA enriched. (F) 
Correlation plot of log10 transformed transcript per million (TPM) values for orthologous genes between 
GM12878 and LCL8664 cell lines. A pseudo count of 1 was added to TPM before log transforming. 
Correlation values were calculated on the untransformed TPM counts. (G-H) Macaque versions of 
Figure 4C-D. (G) Enrichment of macaque-specific trans only regions for TF footprints stratified by the 
differential expression of the TF. Text is only shown for the most differentially expressed and enriched 
TFs. (H) Percentage of macaque-specific trans only regions that overlap a given footprint. TFs within 
the same motif archetype were merged before determining the number of overlaps. Related to Figure 4.  

Figure S5: Additional evolutionary analysis of cis only, trans only, cis & trans and conserved 
active regions. (A) Enrichments of conserved active regions for 30-way PhastCons elements. For the 
bar chart, the Fisher’s Exact Test odds ratio is plotted with 95% confidence intervals, which were 
estimated from 10,000 bootstraps. Windows were log2-scaled. Asterisks indicate p-value < 0.05. (B) 
Enrichments of cis only, trans only, cis & trans, and conserved active regions for human accelerated 
elements for multiple human-rhesus PhyloP thresholds. (C) Boxplots of the percent sequence identity 
for each region. (D) Fraction of each region set assigned to a given sequence age. (E) The observed 
vs. expected values of each region set for a given sequence age. (F) Enrichments of cis only, trans 
only, and cis & trans regions for all transposable elements (TEs) compared to an expected background. 
The Fisher’s Exact Test odds ratio (OR) is plotted with 95% confidence intervals, which were estimated 
from 10,000 bootstraps. Windows were log2-scaled. (G) Enrichments of conserved active regions for 
subfamilies of TEs compared to an expected background. (H-I) Enrichments of (H) human-specific cis 
& trans regions and (I) macaque-specific cis & trans regions for subfamilies of TEs compared to an 
expected background. Related to Figure 5. 

Figure S6: Cis only, trans only, and cis & trans regions are similarly enriched for genetic 
variation associated with UKBB traits (A) Enrichments of cis only, trans only, and cis & trans regions 
for 17 UK biobank traits compared to an expected background. The median fold-change is plotted with 
95% confidence intervals, which were estimated from 10,000 bootstraps. (B) Heatmap of cis only, trans 
only, and cis & trans enrichment scores for each of the 17 UK biobank traits. The scores for the human-
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specific and macaque-specific groups are displayed for Viral Hepatitis C. Asterisk represents p-value < 
0.05. (C) Versions of Figure 6B for all other associated genes. Related to Figure 6. 

STAR METHODS 

RESOURCE AVAILIBILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, Emily Hodges (emily.hodges@vanderbilt.edu). 

Materials availability 

• This study did not generate new unique reagents. 

Data and code availability 

• ATAC-STARR-seq and RNA-seq data have been deposited in the Gene Expression Omnibus 
(GEO) and are publicly available as of the date of publication. Accession numbers are listed in 
the key resources table.  

• All code has been deposited in a publicly available GitHub Repository. A link to the repository is 
listed in the key resources table. 

• Any additional information required to reanalyze the data reported in this paper is available from 
the lead contact upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell Lines 

One human lymphoblastoid cell line (GM12878) and one rhesus macaque lymphoblastoid cell line 
(LCL8664) were used in this study.39-41 GM12878 is female, while LCL8664 is male. GM12878 and 
LCL8664 were purchased directly from Coriell and ATCC (CRL-1805), respectively. We cultured both 
cell lines with RPMI 1640 Media containing 15% fetal bovine serum, 2mM GlutaMAX, 100 units/mL 
penicillin and 100 μg/mL streptomycin. Cells were cultured at 37°C, 80% relative humidity, and 5% 
CO2. Cell density was maintained between 0.2×106 and 1.5×106 cells/mL with a 50% media change 
every 2-4 days. All cell lines were regularly screened for mycoplasma contamination. 

ATAC-STARR-seq 

We performed four ATAC-STARR-seq experiments following the method as described in Hansen & 
Hodges 2022.37 We created two ATAC-STARR-seq plasmid libraries, one for the GM12878 accessible 
genome and another for the LCL8664 accessible genome. For a total of four experiments, we 
electroporated each ATAC-STARR-seq plasmid library into both GM12878 and LCL8664 cells, 
resulting in the following conditions: GM12878 Library in GM12878 Cells (referred to as HH in text), 
GM12878 Library in LCL8664 Cells (HM), LCL8664 Library in GM12878 Cells (MH), and LCL8664 
Library in LCL8664 Cells (MM). For HH and MH, we used Buffer R, whereas, for HM and MM, we used 
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Buffer T from the Neon™ Transfection System 100 µL Kit (Invitrogen, #MPK10025). Both plasmid DNA 
and reporter RNAs were harvested from the same flask of cells and processed into llumina sequencing 
libraries. We repeated the electroporation, harvest, and sequencing library preparation steps for a total 
for three replicates; replicates were performed on separate days. The plasmid DNA and reporter RNA 
sequencing libraries for each replicate of each condition was sequenced on an Illumina NovaSeq 6000 
machine, PE150, at a requested read depth of 50 or 75 million reads, for DNA and RNA samples, 
respectively, through the Vanderbilt Technology for Advanced Genomics (VANTAGE) sequencing core. 
The GM12878 Library in GM12878 Cells was previously analyzed,37 but in a different manner (GEO 
accession: GSE181317).  

RNA-sequencing 

Before RNA isolation, we electroporated hSTARR-seq_ORI plasmid (Addgene #99296) into GM12878 
and LCL8664 and matched the experimental conditions performed for the ATAC-STARR-seq plasmid 
library transfections, but on a smaller scale. Instead of twenty 100μL electroporation reactions, we 
performed a single 100μL reaction for each replicate and kept the cell count:DNA ratio (3x106 cells and 
3μg plasmid DNA per reaction) and electroporation conditions the same. We performed two replicates 
each for GM12878 and LCL8664 cell lines.  

24 hours later, we harvested total RNA using the TRIzol™ Reagent and Phasemaker™ Tubes 
Complete System (Invitrogen™, #A33251) and prepared Illumina-ready RNA-sequencing libraries 
using the SMARTer® Stranded Total RNA Sample Prep Kit - HI Mammalian (Takara Bio, #634874). 
Libraries were analyzed for quality and submitted for sequencing on an Illumina NovaSeq 6000 
machine, PE150, at a requested read depth of 50 million reads through the Vanderbilt Technology for 
Advanced Genomics (VANTAGE) sequencing core. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

ATAC-STARR-seq Read Processing 

FASTQ files were trimmed and analyzed for quality with Trim Galore! 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore) using the --fastqc and --paired 
parameters. Trimmed reads were mapped to hg38 with bowtie2 using the following parameters: -X 500 
--sensitive --no-discordant --no-mixed.82 Mapped reads were filtered to remove reads with MAPQ < 30, 
reads mapping to mitochondrial DNA, and reads mapping to ENCODE blacklist regions using a variety 
of functions from the Samtools software package.83 When desired, duplicates were removed with the 
markDuplicates function from Picard (https://broadinstitute.github.io/picard/). Read count was 
determined using the flagstat function from Samtools. Library complexity was measured using the 
EstimateLibraryComplexity function from Picard and plotted with ggplot2 in R.84 Correlation plots were 
generated with the deepTools package85. Read counts for 1kb genomic windows were compared 
between the filtered, with-duplicates bam files using the multiBamSummary bins function and the 
following parameters: -e and --binSize 1000. Plots were generated using the plotCorrelation function and the 
following parameters: --skipZeros --corMethod pearson.  

Chromatin Accessibility Peak Calling and Filtering 

Accessible chromatin (ChrAcc) peaks were called in all four conditions (GM12878inGM12878, 
LCL8664inLCL8664, GM12878inLCL8664, LCL8664inGM12878) using Genrich with the -j parameter, 
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which specifies ATAC-seq mode (https://github.com/jsh58/Genrich). For each condition, de-duplicated 
bam files for the three plasmid DNA replicates were provided to the peak caller; as part of peak calling, 
Genrich collapses replicates to yield one peak set for the given condition and uses variance between 
replicates to assign q-values. Peaks were filtered by q-value so that the genomic coverage of the entire 
peak set for a given condition was ~1.8% (q-value thresholds ranged between 1.1e-7 and 4.3e-6). The 
purpose of filtering for genomic coverage of each peak set was to account for data quality differences 
between the samples. This allows us to compare the most accessible 1.8% of the respective genomes 
rather than regions defined by a significance threshold. We compared several different genome 
coverages but qualitatively determined 1.8% best reflected true accessible peaks when looking at read 
pileup in a genome browser. We subsequently removed XY chromosomes since LCL8664 is male and 
GM12878 is female. Together, this yielded between 58,000-63,000 peaks for each of the four 
experiments. Peaks called in rheMac10 coordinates (LCL8664inGM12878 and LCL8664inLCL8664) 
were converted to hg38 coordinates using liftOver with -minMatch set to 0.9.  

Differential Accessibility Analysis 

We intersected the filtered ChrAcc peaks from each experiment using the default parameters of 
BEDTools intersect86 to isolate ChrAcc regions shared across all four contexts—this resulted in 29,531 
shared ChrAcc peaks (Figure 1D). To obtain specific-specific accessible regions, we intersected only 
the GM12878inGM12878 and LCL8664inLCL8664 ChrAcc peaksets and wrote non-overlaps using the 
-v parameter. We performed motif enrichment using the findMotiftsGenome.pl script from the HOMER 
package (http://homer.ucsd.edu/)87 using the following parameters: -size given -mset vertebrates. We 
used ChIPSeeker to annotate differential accessible regions based on their distance to the nearest TSS 
(annotatePeak, level = gene & tssRegion = -2000/+1000), assign nearest neighbor genes, and perform 
Reactome pathway enrichment analysis using the assigned genes.88,89 For the annotation plotting, we 
removed the Downstream (<=300) term from the legend to simplify, since we did not observe 
assignments to that term.  

Genome Browser 

The respective genome browser tracks in Figure 1E, 6D, and 7A were viewed in the hg38 build using 
the UCSC genome browser90 and a combination of custom and public tracks. PDFs of these views 
were downloaded and further annotated in illustrator; positions of the tracks did not change during 
illustrator editing.    

Active Region Calling Within Shared Accessible Peaks 

Generation of Sliding Window Bins 

We first merged all four ChrAcc peak sets (hg38 coordinates) into a single file with the UNIX cat 
function followed by BEDTools merge to generate a merged set of all peaks. Since ChrAcc peaks 
contain both active and silencing regulatory elements, it is important to divide peaks into smaller 
windows to best identify the element driving activity.37 To do this, we tiled the merged peak set with 
sliding windows usingBEDTools makewindows and the -s 10 -w 50 parameters; bins smaller than 50 bp 
were removed. This generated 7.65 million bins for analysis.  

Filtering Bins for Alignability and Shared Accessibility 
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To perform comparative analyses between human and macaque genomes, we required that all bins 
were mappable between hg38 and rheMac10 in a 1:1 orthologous fashion and with at least 90% 
alignability. To do this, we used liftOver with -minMatch=0.9 to convert our bins from hg38 coordinates 
to rheMac10 and bins that did not map from hg38 to rheMac10 were removed from the hg38 file. 
Furthermore, bins that changed size by more than +/- 2bp in the liftOver were excluded from the 
analysis. Altogether, this removed ~552,000 bins (~7.3%).  

Because differentially accessible regions would be only assayed in one ATAC-STARR-seq plasmid 
library, they would confound differential activity measures when comparing the respective genomes. 
For this reason, we also required that our bins overlap shared ChrAcc accessible peaks by intersecting 
the alignability-filtered bins with the 29,531 shared ChrAcc peaks described above; we used BEDTools 
intersect with the -u option set. This resulted in 2,028,304 (26.5%) sliding window bins for further 
analysis.  

Active Region Calling 

We called active regions for each of the four experimental conditions using the 2,028,304 filtered sliding 
window bins as input. To control against sample-to-sample variability, we called the top 10,000 most 
significantly active regulatory regions in each condition. By comparing the same number of DNA 
regulatory elements across conditions, we assume that a similar number of regions are active in each 
of the four experiments. This is a more conservative assumption than comparing regions called with the 
same q-value threshold across experiments, which can be greatly influenced by data quality differences 
and may not accurately reflect biology in a comparative analysis. We compared the results of calling 
different active region thresholds including the top 5,000, 10,000, 25,000, and 50,000 (Figure S2C,D).  

To call active regulatory regions, we first assigned reads to the filtered sliding window bins using the 
featureCounts function from the Subread package with the following parameters: -p -B -O --minOverlap 
1;91 for rheMac10 mapping reads, we used bins in rheMac10 coordinates (linked to hg38 coordinates 
by a unique bin ID). To avoid negative data interpretations, we next removed bins with a count of zero 
for any RNA or DNA replicate; between 8,775 and 70,819 bins were removed in each condition. We 
then quantified the activity of each bin by comparing RNA and DNA counts using DESeq2 
(fitType="local").92 To obtain the top 10,000 most significantly active regions in each condition, we 
adjusted Benjamini-Hochberg adjusted p-value thresholds to yield active bins that when merged in 
genomic space resulted in about 10,000 active regions for each condition–padj thresholds ranged 
between 0.026 and 0.11. To ensure our active regions were robust regulatory elements, we required 
that each region be made up of at least 5 bins by using BEDTools merge with the -c option and a 
custom awk script. For the supplemental analysis investigating threshold effects on cis and trans 
divergent regions calls, we followed the same process of adjusted padj thresholds to yield the desired 
active region count and then performed the same methods as described above to identify cis and trans 
divergent regions. We used ChIPSeeker to annotate the active regions in each condition based on their 
distance to the nearest TSS (annotatePeak, level = gene & tssRegion = -2000/+1000). For the 
annotation plotting, we removed the Downstream (<=300) term from the legend to simplify, since we did 
not observe any assignments to that term. 

Generation of ATAC-STARR-seq Activity bigWigs 
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We generated ATAC-STARR-seq activity signal files with the deepTools package; to streamline this, 
we created a custom python script, which is available on the ATAC-STARR-seq method GitHub (github 
link; generate_ATAC-STARR_bigwig.py). We compared the log2 ratio of cpm-normalized RNA and 
cpm-normalized files using the bigwigCompare function and the following parameters: --operation log2 -
-pseudocount 1 –skipZeroOverZero; the cpm-normalized bedGraph files for RNA and DNA were 
generated using the bamCoverage function and the following parameters: -bs 10 --normalizeUsing 
CPM. MH and MM activity signal files were converted from bigwig to bedGraph (with the 
bigWigToBedGraph function from UCSC), lifted over to hg38 coordinates from rheMac10 coordinates 
with Crossmap,93 and then converted back to bigwig files using the bedGraphToBigWig function from 
UCSC. We generated bigwigs for individual replicates, as well as for merged replicate bam files.  

Heatmaps of ATAC-STARR-seq Activity at Active and Inactive Bins 

We first subsampled the inactive bins for each condition using the Unix shuf command (-n 150000) to 
reduce the number of regions plotted. ATAC-STARR-seq activity signal files for each replicate were 
plotted at their respective active and randomly subsampled inactive bins using the computeMatrix 
function (parameters: -a 500 -b 500 --referencePoint center -bs 25 --missingDataAsZero) and the 
plotHeatmap function (parameters: --sortRegions  no --zMin -0.5 --zMax 0.5), both from deepTools. 

Differential Activity Analysis 

HH vs MM Activity Comparison 

To identify conserved and species-specific active regions, we intersected the HH active regions with the 
MM active regions using BEDTools intersect. We called regions with at least a 50% reciprocal overlap 
as conserved active regions, whereas HH active regions that did not reciprocally overlap by at least 
50% were classified as human-specific active regions and MM active regions that did not reciprocally 
overlap by at least 50% were classified as macaque-specific active regions. For all intersections, we 
used the following parameters: -f 0.5 -F 0.5 -e. This turns the 50% reciprocal into an “or” operation 
where either regions A&B are considered conserved active if either A or B overlaps the other by greater 
than 50%. This avoids mislabeling nested overlaps as differentially active where A could overlap B with 
100% but B could be two times larger than A and therefore not overlap A by 50%. For the conserved 
active regions, we wrote the entire interval of the two overlapping regions using a combination of 
BEDTools intersect and merge in a custom script. We used the -v option in addition to the parameters 
listed above to write differentially active.  

Identification of Cis Divergent Regions and Trans Divergent Regions 

We determined if divergent active regions were a result of a change in the DNA sequence (cis) or a 
change in the cellular environment (trans) by intersecting species-specific active regions with the active 
region set from the relevant condition. For example, human-specific cis divergent regions were 
determined by intersecting the human-specific active regions with the MH active region set using 
BEDTools intersect. Human-specific active regions that did not reciprocally overlap by at least 50% 
were determined to be Human-specific cis divergent regions (parameters: -v -f 0.5 -F 0.5 -e). The other 
comparisons are indicated in Figure 2 and were performed in the same way as described above.  

Identification of Cis & Trans Regions 
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To identify regions that were divergent in both cis & trans, we asked if the exact same region was 
contained in both the cis and trans divergent region sets using BEDTools intersect and the -f 1.0 -r 
parameters; we maintained species-specificity by only comparing human-specific cis with human-
specific trans and macaque-specific cis with macaque-specific trans. Regions that were unique to the 
cis region set were classified as cis only, while regions that were unique to the trans region set were 
classified as trans only.  

Observed vs. Expected Analysis of Active Region Overlaps 

We calculated the expected overlap assuming random distribution in shared accessible chromatin for 
all differential activity comparisons. To do this, we first randomly shuffled the MM, HM, and MH active 
region sets within shared accessible chromatin with BEDTools shuffle (1000 iterations with the -
noOverlapping parameter). This yielded 1000 sets of randomly positioned active region sets for MM, 
HM, and MH within the analytical space of shared accessible chromatin. For each of the 1000 shuffled 
region sets per condition, we determined the expected number overlaps by intersecting them with either 
the HH active, the human-specific active, or the macaque-specific active regions using BEDTools 
intersect in the same manner done for the observed value. We then compared the expected overlap 
distribution with the observed value and performed Grubb’s Test in R to test if the observed value was 
a statistical outlier.  

Heatmaps Comparing ATAC-STARR-seq Activity Between Conditions 

ATAC-STARR-seq activity signal files were plotted at the respective regions using the computeMatrix 
function (parameters: -a 1000 -b 1000 --referencePoint center -bs 10 --missingDataAsZero) and the 
plotHeatmap function (parameters: --sortRegions no --zMin -0.5 --zMax 0.5), both from deepTools. 

Functional Characterization of Cis and Trans Divergent Regions 

Annotation 

We used ChIPSeeker to annotate cis only, trans only, cis & trans, and conserved active regions based 
on their distance to the nearest TSS (annotatePeak, level = gene & tssRegion = -2000/+1000). For the 
annotation plotting, we removed the Downstream (<=300) term from the legend to simplify, since we did 
not observe assignments to that term. 

TF Motif Enrichment 

We first generated background regions for each region set by shuffling the respective regions within 
shared accessible chromatin 10 times using bedtools shuffle and the -chrom -noOverlapping -maxTries 
5000 parameters. We then performed motif enrichment using the findMotiftsGenome.pl script from the 
HOMER package using the respective background and the -size given and -mset vertebrates 
parameters. The top 15 motifs for each region set were selected for plotting using pheatmap and the 
following parameters: scale="row", cluster_cols = FALSE, cluster_rows = TRUE, cutree_rows = 7, 
cellheight = 15, cellwidth = 30, method = "ward.D2”. Motifs within the same motif archetype94 were 
collapsed so that only one motif of that archetype was displayed on the heatmap in the main figure.  

Gene Ontology 
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We performed gene ontology on the putative target genes for cis only, trans only, cis & trans, and 
conserved active regions using GREAT95 (http://great.stanford.edu/public/html/). We used the whole 
genome as background and assigned genes with the default Basal plus extension option. The top 10 
terms were plotted in R.  

Histone Modification Heatmaps 

GM12878 ChIP-seq bigwig files for H3K27ac (ENCFF469WVA), H3K4me3 (ENCFF564KBE), and 
H3K4me1 (ENCFF280PUF) were downloaded from the ENCODE consortium71 and plotted at 
conserved active, human-specific cis only, human-specific trans only, and human-specific cis & trans 
regions with deepTools. Specifically, we used the computeMatrix function, with the following 
parameters: -a 2000 -b 2000 --referencePoint center -bs 10 –missingDataAsZero and the plotHeatmap 
function with the following key parameters: --sortUsing mean –sortUsingSamples 1 (the H3K27ac file).   

Distance to ChrAcc Peak Summits 

We first extracted region centers in R using the following operation: center = ((End-Start)/2)+start; 
decimals were rounded up to integers. The ChrAcc peak summits are provided in the original 
narrowPeak file for GM12878 ChrAcc peaks, so we obtained peak summits for the shared accessible 
peaks by intersecting shared peaks with the human-active peak file. The distance between region 
center and peak summit was calculated using the bedtools closest function and the -D ref parameter. 
This distance was then plotted as a density plot with ggplot2 in R.  

To generate the H3K27ac profile plot, we plotted the GM12878 H3K27ac bigwig from ENCODE at 
ChrAcc peak summits using deepTools with the computeMatrix function (parameters: -a 500 -b 500 --
referencePoint center -bs 10 –missingDataAsZero) and the plotProfile function. We repeated for the 17-
way PhyloP bigwig after downloading from the UCSC genome browser 
(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP17way/hg38.phyloP17way.bw).  

Generating expected background datasets from shared accessible, inactive regions 

We identified all shared accessible peaks from any of the four (HH, HM, MH, MM) experiments. We 
then used BEDTools to subtract active, shared accessible peaks, leaving a set of shared accessible, 
but inactive peaks. Then, we shuffled active regions with BEDTools (-noOverlapping -maxTries 5000) in 
this shared accessible, inactive genomic background 10x to produce length-matched expectation 
datasets. We used these elements as our background to interpret evolutionary and genomic features of 
active and divergent elements.  

TF Footprinting 

Transcription factor footprinting was performed using the TOBIAS software package.96 For both the 
GM12878inGM12878 and LCL8664inLCL8664 samples, we used ATACorrect to generate Tn5-bias 
corrected cut count signal files from deduplicated bam files. We then used the corrected cut-counts files 
to calculate TF binding in the respective genomes using the ScoreBigWig function. We then paired all 
core non-redundant vertebrate JASPAR motifs97 with the GM12878 and LCL8664 TF binding profiles to 
call individual transcription factor footprints in the two genomes using the BINDetect function and the --
bound-pvalue parameter set to 0.05 . Motifs with a footprint were classified as bound, while motifs 
without a footprint were classified as unbound. Aggregate plots were generated using the deepTools 
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package. Tn5-corrected signal was measured at bound and unbound sites for each respective TF using 
the computeMatrix reference-point function with the following key parameters:  -a 75 -b 75 --
referencePoint center --missingDataAsZero -bs 1. The resulting matrix was plotted using the plotProfile 
function.  

To determine differential footprinting at specific loci, we compared the TF motifs that footprinted in 
human and rhesus. We mapped the position of rhesus TF footprints in hg38 by lifting those footprint 
coordinates from rheMac10 using LiftOver software from UC Santa Cruz.  

Trans only TF footprint enrichment vs. differential expression 

We evaluated footprints for each TF for enrichment in human-specific and macaque-specific trans only 
regions compared to 10x length-matched expected regions. Enrichment scores were computed using 
Fisher’s Exact Test with a BH adjusted p-value < 0.05. We intersected the enrichment score with the 
differential expression values of the specified TF. We removed footprints associated with TF multimers, 
for example the SMAD2-SMAD3-SMAD4 motif, so that only individual TFs, such as SMAD3, were 
assigned differential expression values. We also removed TFs that were not analyzed in the differential 
expression analysis, likely because they did not meet the 1:1 orthology requirement. Altogether, 386 
TFs were retained for plotting. Scatterplots were made with ggplot2 and text was plotted for TFs with a 
footprint enrichment log2OR > 0, footprint enrichment padj < 1x10-10, differential expression log2FC > 0 
(log2FC < 0 for macaque-specific), and a differential expression padj < 1x10-50 (padj < 1x10-20

 for 
macaque-specific). For the TFs that met these criteria, which we defined as putative trans regulators, 
we intersected their footprints (BEDTools intersect: default parameters) with the respective trans only 
regions to determine the percentage with the given footprint. In a few cases we merged TF footprints, 
because some of the TFs shared the same motif archetype,94 for example IRF4, IRF7, and IRF8.   

Evolutionary Characterization of Cis and Trans Divergent Regions 

PhastCons Enrichment Analysis  

We intersected active regions with 30-way MultiZ PhastCons elements—derived from an alignment of 
27 primate species and three mammalian outgroup species98,99±—(last downloaded September 22nd, 
2021 from http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons30way/) using BEDTools with 
standard parameters. A region was considered conserved when overlapped >= 1 bp of a PhastCons 
element. For each category with activity differences between humans and rhesus macaques, we 
quantified PhastCons element enrichment in that category versus the matched 10x expectation sets 
using Fisher’s Exact Test with a BH adjusted p-value < 0.05. Unless specified, in the evolutionary 
analyses, we combined human and macaque elements and evaluated their characteristics in the 
human genome.  

Human Acceleration Enrichment Analysis 

We estimated human acceleration from ATAC-STARR-seq bins using the phyloP function from the 
Phast tools suite (http://compgen.cshl.edu/phast/). Short term estimates of human acceleration and 
conservation (--mode CONACC) were calculated between the human and chimp branches against the 
30-way neutral tree model (--g hg38.phastCons30way.mod) using the likelihood ratio test (--method 
LRT). For long term estimates of human acceleration, we first trimmed the model tree to remove any 
species on the human branch that emerged after the most recent common ancestor between humans 
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and rhesus macaques, then used this trimmed neutral tree model to quantify acceleration and 
conservation (described above). Bins with a phyloP score cutoff < -1 were considered accelerated. We 
removed any bins from the acceleration analysis that overlapped human duplicated regions (hg38 
SELF-CHAIN) with >= 1 bp overlap using BEDTools with standard parameters. To assign a single 
human acceleration value per divergently active region and matched-expectation, we assigned the bin 
with the minimum PhyloP score to entire region. We estimated human acceleration enrichment as the 
number of human accelerated regions (phylop < -1.0, corresponding to a p-value <0.05) in a divergently 
active group versus matched expected acceleration values. We assigned each region in the observed 
and expected dataset with the lowest phyloP bin value (i.e. the most accelerated value).  

Repeatmasker Transposable Element Enrichment  

We downloaded hg38 repeatmasker coordinates from the UCSC genome browser (last downloaded 
August 21st, 2021). Active regions and matched expectation sets were intersected with TE coordinates 
and active regions were assigned TE if a TE overlapped >=1bp of a region. To test for enrichment, we 
used Fisher’s Exact Test with a BH adjusted p-value < 0.05 to compute the enrichment of TEs 
overlapping active elements versus matched expectation datasets. For family-specific analysis, we 
stratified by TE family overlap and quantified TE enrichment as the number of elements overlapping a 
TE family per activity category (e.g. cis only) and all other activity category datasets using Fisher’s 
Exact Test with a BH adjusted p-value < 0.05.  

TF footprint Enrichment for SINE/Alu Cis & Trans Regions 

We evaluated GM12878 TF footprints for enrichment in cis & trans regions that overlapped SINE/Alu 
transposable elements compared to 10x expected regions. Enrichment scores were computed using 
Fisher’s Exact Test with a BH adjusted p-value < 0.05.  

Assigning Sequence Ages  

The genome-wide hg38 100-way vertebrate multiz multiple species alignment was downloaded from 
the UCSC genome browser. Each syntenic block was assigned an age based on the most recent 
common ancestor (MRCA) of the species present in the alignment block in the UCSC all species tree 
model. Regions and matched shuffles were intersected with syntenic blocks and the maximum age for 
each region was selected as the representative age. For most analyses, we focus on the MRCA-based 
age, but when a continuous estimate is needed, we use evolutionary distances from humans to the 
MRCA node in the fixed 100-way neutral species phylogenetic tree. Estimates of the divergence times 
of species pairs in millions of years ago (MYA) were downloaded from TimeTree.100 Sequence age 
provides a lower-bound on the evolutionary age of the sequence block. Sequence ages could be 
estimated for 94% of the autosomal bp in the hg38 human genome. 

Multiple Sequence Origin Enrichment Analysis 

After assigning sequence ages to regions (above), we quantified how often regions overlapped multiple 
sequence ages (referred to as multi-origin sequences) with >=6 base pairs in length per age. We 
compared the number of multi-origin sequences in cis-, trans- and cis & trans categories with their 
length-matched expectation sets (see above section Generating genomic background - shared 
accessible, inactive expectation datasets) and computed enrichment using Fisher’s Exact Test.  
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Human Variant Enrichment Analysis 

eQTL Enrichment 

We intersected each divergent activity category with eQTL from GTEx (version 8; last downloaded April 
30th 2018) using BEDTools with standard parameters. To measure whether the observed number of 
eQTL variants was more than expected, we shuffled each divergent set of regulatory elements 1000x in 
a background set of length-matched shared accessible, inactive peaks and quantified the fold-changes 
as the number of observed eQTL variants divided by the median number of expected eQTL variants. 
We calculated the empirical p-values from the number of eQTL overlaps in the expected sets that were 
equal to or more extreme than the observed number of eQTL overlaps. We bootstrapped the 95% 
confidence intervals by estimating the distribution of fold-changes from the observed count with each of 
the 1000 expected overlaps.  

UKBB GWAS Trait Enrichment 

We selected a set of immune, inflammatory, and B cell related traits from the UKBB pan-GWAS. For 
each trait, we included only the tag-SNPs with genome-wide significance (p<5.5-e8) and LD-expanded 
those tag-SNPs to include variants in perfect LD (R2=1.0) in European populations from 1000 genomes 
(1000 genomes consortium). We removed any active regions that overlapped the HLA locus in hg38 
(chr6:28898751-33807669), including 4 cis only elements, 1 cis & trans, 1 trans only, and 0 conserved 
active. We then intersected the accessible peaks containing divergently active regions with LD-
expanded, significant GWAS SNPs using BEDTools with standard parameters. To measure whether 
the observed number of GWAS variants was more than expected, we shuffled each divergent set of 
regulatory elements 1000x in a background set of length-matched shared accessible, inactive regions 
and quantified the fold-changes as the number of observed GWAS variants divided by the median 
number of expected GWAS variants. We calculated the empirical p-values from the number of GWAS 
overlaps in the expected sets that were equal to or more extreme than the observed number of GWAS 
overlaps. We bootstrapped the 95% confidence intervals by estimating the distribution of fold-changes 
from the observed count with each of the 1000 expected overlaps.  

Gene Expression Analysis 

Data Collection 

In addition to the RNA-seq experiments described above, we downloaded and analyzed FASTQ files 
from the following publications: Cain et al., 2011 - GSE24111 (SRR066745-7, SRR066751-3); Blake et 
al., 2020 - GSE112356 (SRR6900782-SRR6900812); Calderon et al., 2019 - GSE118165 (SRR11007061, 
071, 082, 090, 092, 094, 096, 113, 121, 124, 126, 127, 137, 147, 156, 158, 160, 170, 183, 186, 188, 190; 
SRR7647654, 656, 658, 696, 698, 700, 731, 767, 768, 769, 807, 808), and the ENCODE GM12878 Wold 
(total RNA-seq: ENCFF248MER, ENCFF006YWA, ENCFF294LGZ, ENCFF995BLA) and Gingeras 
(polyA plus RNA-seq: ENCFF001REH - ENCFF001REK) GM12878 datasets. The FASTQ files from 
these datasets and our GM12878 and LCL8664 data were processed in the same way.  

Fastq Processing of RNA-seq Data 

Raw reads were trimmed and analyzed for quality with Trim Galore! using the --fastqc and --paired 
parameters. To avoid bias arising from duplicated genes, we restricted our analysis to 1:1 orthologous 
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exons that we obtained from XSAnno101 (https://hbatlas.org/xsanno/files/Ensembl-v64-Human-
Macaque: Ensembl.v64.fullTransExon.hg19TorheMac2.hg19.bed and 
Ensembl.v64.fullTransExon.hg19TorheMac2.rheMac2.bed). The hg19 file was converted to hg38 
coordinates using liftOver. Because no rheMac2 to rheMac10 map chain file existed, we first converted 
rheMac2 coordinates to rheMac8 and then to rheMac10. We then mapped trimmed reads to the 1:1 
orthologous exons in the respective genome using the STAR aligner102 (alignReads function); we built a 
STAR index for each genome for each illumina read length type (150nt, 50nt, 35nt, and 100nt) and 
applied it to the respective sample. We next counted reads in each 1:1 orthologous exon using the 
featureCounts function from subread91; for our samples, we set the -s parameter to 1 because they 
were stranded RNA-seq datasets, while all others were set to 0 (unstranded). For paired datasets, we 
also specified the -p and -B options. We applied the -O option to all datasets. 

Differential Expression Analysis 

For all pairwise comparisons presented, we performed differential expression analysis with DESeq2 
(fitType="local") and extracted results using the lfcShrink function and apeglm shrinkage algorithm, 
which shrinks the effect size of low count data (cite deseq and apeglm). Before comparing GM12878 
and LCL8664, we removed sex chromosomes. We defined human-specific expressed genes as those 
with a log2FC > 2 and a padj < 0.001, while macaque-specific expressed genes had a log2FC < -2 and 
a padj < 0.001. We used ChIPSeeker and ClusterProfiler to perform Reactome pathway enrichment 
analysis using the differentially expressed gene sets;103 we plotted the top five to six categories in each 
case.  

TPM normalization and Correlation Between Human and Macaque LCLs 

For each of our GM12878 and LCL8664 replicates, we normalized read counts so they represented 
transcripts per million (TPM); we first calculated RPKM [10^9 * (reads mapped to transcript / (total 
reads * length of transcript))] and then converted to TPM [10^6 * (RPKM/(sum(RPKM)))]. We then 
calculated the mean TPM for each gene between the two replicates, added a pseudo count of 1, and 
log10 normalized the values. We then plotted the GM12878 and LCL8664 values on a 2D bin plot; both 
Pearson and Spearman’s correlation coefficients were calculated using the mean TPM values.    

Principle Component Analysis 

For each of the samples plotted in each PCA, we first extracted variance stabilizing transformed (VST) 
count values from the DESeq Dataset (dds) with the vst function (blind=TRUE) and then plotted 
principal components 1 and 2 using the plotPCA function (both functions from the DESeq2 package).  
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Hansen/Fong et al. 2022, Figure 5 Supplement
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Hansen/Fong et al. 2022, Figure 6 Supplement
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