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Abstract

Summary: GSEL is a computational framework for calculating the enrichment of signatures of diverse evolutionary
forces in a set of genomic regions. GSEL can flexibly integrate any sequence-based evolutionary metric and analyze
sets of human genomic regions identified by genome-wide assays (e.g. GWAS, eQTL, *-seq). The core of GSEL’s ap-
proach is the generation of empirical null distributions tailored to the allele frequency and linkage disequilibrium
structure of the regions of interest. We illustrate the application of GSEL to variants identified from a GWAS of body
mass index, a highly polygenic trait.

Availability and implementation: GSEL is implemented as a fast, flexible and user-friendly python package. It is
available with demonstration data at https://github.com/abraham-abin13/gsel_vec.

Contact: abraham.abin13@gmail.com or tony@capralab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Motivation

Over the last 15 years (Claussnitzer et al., 2020; Loos, 2020), the
proliferation of low-cost genotyping and genome sequencing has
enabled the discovery of millions of associations between genotypes
and phenotypes, at both the molecular and organism scales (Canela-
Xandri et al., 2017; Watanabe et al., 2019). The determination of
patterns of DNA sequence variation for thousands of diverse indi-
viduals has also enabled development of methods for quantifying
signatures of different evolutionary forces, including diverse modes
of natural selection (e.g. negative, positive and balancing selection
over different time scales) (Fan et al., 2016; Pritchard et al., 2010;
Rees et al., 2020; Vitti et al., 2013). Understanding the history of
evolutionary forces on loci associated with a trait offers powerful
insights that can guide prioritization of variants for downstream
analyses and answer fundamental questions about the evolution of
traits (Benton et al., 2021; Guo et al., 2018; LaBella et al., 2020;
Sella and Barton, 2015). However, rigorously evaluating whether

observed evolutionary patterns in regions of interest differ from
expected values remains challenging, because genomic features such
as minor allele frequency (MAF) and linkage disequilibrium (LD)
influence statistical power to detect both genome-wide associations
and evolutionary signatures.

Here, we describe GSEL, a computational framework that calcu-
lates region- and trait-level enrichments for diverse evolutionary
measures (Fig. 1). GSEL builds appropriate null distributions for
each region and trait conditioned on genomic features that influence
power and ascertainment.

GSEL provides a simple command line interface that seamless-
ly integrates disparate computational steps. GSEL’s built-in paral-
lelization and vectorization enable rapid processing of large
numbers of sets (each of which may contain many genomic
regions), even when generating empirical backgrounds based on
thousands of permutations each with thousands of control
regions. GSEL currently includes 14 diverse measures of different
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evolutionary signatures by default, and it can additionally incorp-
orate any evolutionary measure with genome-wide quantification.
By integrating the wealth of available data on associations be-
tween genomic loci and phenotypes with methods for detecting
genetic signatures of distinct evolutionary forces, GSEL enables
characterization of the genome–phenome map through an evolu-
tionary lens.

2 Usage

GSEL can be run from the command line by specifying a set of gen-
omic regions with trait associations. GSEL can analyze any set of
regions, but here we illustrate its application to regions identified by
a genome-wide association study (GWAS). After installation, a test
suite is provided to ensure the pipeline functions as expected.

3 Analysis methods

GSEL computes region- and set-level enrichments for evolutionary
measures by comparing observed values to empirically generated
null distributions. GSEL begins by identifying independent LD
blocks among the input regions (e.g. independent trait-associated
regions from GWAS) using the ‘–clump’ flag in PLINK (Chang
et al., 2015). Each region is labeled by the single-nucleotide poly-
morphism (SNP) with the lowest P-value, which we refer to as the
index SNP. Next, GSEL randomly selects 5000 SNPs for each index
SNP matching on MAF (65%) and LD structure (number of SNPs
with r2�0.9) and expands to include control SNPs based on LD.
By default, GSEL considers 1000 Genomes Phase 3 data from the
European super-population and uses the algorithm and default
parameters in SNPSNAP (Pers et al., 2015); however, all of these

references and thresholds can be customized. Together, the matched
LD expanded control SNPs compose a matched region.

For a given evolutionary measure, the most extreme values
across control SNPs in each matched region form a background dis-
tribution. GSEL then quantifies enrichment as a z-score based on the
extreme value from the trait-associated region and the background
distribution. An empirical P-value is obtained by comparing the
number of matched regions with a value equal to or more extreme
than the observed trait value. Multiple testing correction over all
trait-associated regions is performed using the Benjamini–Hochberg
method for false discovery rate control.

GSEL also calculates set-level enrichments (e.g. across all regions
associated with a trait). For an evolutionary measure, the set-level
average is calculated based on a summary statistic computed across
the extreme values at each region (e.g. mean or max). To generate a
set-wide background distribution, GSEL generates matched sets (de-
fault: 5000) from the matched SNPs, where each set has one
matched region for each region in the input set. For every set, GSEL
calculates the summary statistic across all the extreme values at each
matched region. Evolutionary enrichment at the region-level is
defined as the region-level statistic subtracted from the background
statistic and divided by the genome-wide standard deviation for that
evolutionary measure. GSEL also calculates an empirical P-value
using the background distribution as described for the region-level
P-value.

4 Outputs and interpretation

The total run time of GSEL scales with the number of input regions.
For large inputs, a user can partition regions into an arbitrary num-
ber of independent bins. For example, each chromosome can be

Fig. 1. GSEL detects evolutionary enrichments from genomic region sets. (A) Using GWAS summary statistics as an example input, GSEL outputs enrichment for evolutionary

measures at the region- and trait-level based on a matched background distribution. (B) After applying GSEL on a GWAS of body mass index, the region level enrichments for

chromosome 22 are quantified by a z-score (color bar) for trait-associated regions (columns) and 14 evolutionary measures (rows). (C) Trait-level enrichments for the body

mass index GWAS are visualized in a radar plot with each spoke representing an evolutionary measure and enrichment measured along the radial axis. Evolutionary measures

include FST, iES, XP-EHH (allelic differentiation within human populations), Beta Score (balancing selection), allele age (time to most recent common ancestor, TMRCA,

from ARGweaver or GEVA), and PhyloP, PhastCons, LINSIGHT, GERP (conserved/accelerated substitution rates between species)
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analyzed simultaneously, and the results then combined to compute
enrichments. To benchmark GSEL performance (Supplementary
Methods), we applied GSEL to 47 GWASs of human traits (Loh
et al., 2015). Body height, which had the largest number trait-
associated regions (n¼6682), required 43 GB of memory and took
8:54:30 (h:min:s) and 4:29:18 for per region and trait-level analyses
respectively on an Intel(R) Xenon(R) CPU ES-2420 at 1.90 and
2.40 GHz. Detailed benchmarks are in Supplementary Table S1.

In addition to producing tabular summaries, GSEL produces
publication-ready heatmaps and radar plots for region- and set-level
enrichments. The region-level plots (Fig. 1B) are labeled according
to index SNPs (columns) and z-scores for evolutionary measures
(rows). For example, for a body mass index GWAS, chromosome 22
contains multiple regions with strong signals of potential recent
positive selection (XP-EHH) and local adaptation (FST). In the set-
level radar plot (Fig. 1C), each evolutionary measure is a spoke, and
each ring represents the enrichment. We observe strong enrichment
for signatures of negative selection (e.g. LINSIGHT, PhastCons,
PhyloP).

5 Conclusion

GSEL is a fast, flexible and user-friendly computational framework
for calculating enrichment for evolutionary signatures in region sets
of interest. GSEL requires only genomic coordinates as input. Even
for input sets with thousands of regions, GSEL can efficiently com-
pute enrichment in a few hours on a single computer. GSEL can eas-
ily be deployed on high-performance computing systems with
PLINK and python packages managed through Anaconda. For ex-
ample, we applied GSEL on over 900 GWASs of human traits and
found a mosaic pattern of selection on trait-associated genomic
regions (Abraham et al., 2022). Finally, new evolutionary measures
and non-European datasets can be analyzed with minimal modifica-
tions (see GitHub repository for instructions). GSEL can be applied
after any genomic analysis to provide evolutionary context for hy-
pothesis generation and downstream analyses.
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