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Abstract

For precision medicine to reach its full potential for treatment of cancer and other diseases, 

protein variant effect prediction tools are needed to characterize variants of unknown significance 

(VUS) in a patient’s genome with respect to their likelihood to influence treatment response 

and outcomes. However, the performance of most variant prediction tools is limited by the 

difficulty of acquiring sufficient training and validation data. To overcome these limitations, we 

applied an iterative active learning approach starting from available biochemical, evolutionary, 

and functional annotations. With active learning, VUS that are most challenging to classify by 

an initial machine learning model are functionally evaluated and then reincorporated with the 
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phenotype information in subsequent iterations of algorithm training. The potential of active 

learning to improve variant interpretation was first demonstrated by applying it to synthetic and 

deep mutational scanning (DMS) datasets for four cancer-relevant proteins. The utility of the 

approach to guide interpretation and functional validation of tumor VUS was then probed on 

the nucleotide excision repair (NER) protein Xeroderma Pigmentosum Complementation Group 

A (XPA), a potential biomarker for cancer therapy sensitivity. A quantitative high-throughput 

cell-based NER activity assay was used to validate XPA VUS selected by the active learning 

strategy. In all cases, active learning yielded a significant improvement in variant effect predictions 

over traditional learning. These analyses suggest that active learning is well suited to significantly 

improve interpretation of VUS and cancer patient genomes.
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Introduction

Sequence-based genetic variant interpretation is a fundamental component of the study 

of human disease, diagnosis of genetic disorders, selection of treatments, and prediction 

of patient outcomes (1). In particular, precision medicine approaches to interpret variants 

of unknown significance (VUS) in tumors and guide clinical decision-making represent 

significant interests of the National Cancer Institute (NCI) (2). However, the performance of 

sequence-based predictive tools is limited by difficulty in acquiring sufficient benchmarking 

data from diverse populations and environments and a resulting lack of functional validation 

(3). Variant effect predictions based on pathogenicity, ensemble scores, or sequence-derived 

features such as evolutionary conservation often fail to provide specific hypotheses for 

mechanisms of dysfunction, in part because such metrics lack insight into protein function 

(4). Incorporating mechanistic and functional data into variant interpretation tools has the 

potential to inform predictive power and treatment selection in precision medicine.

An increasing number of rare, nonrecurrent VUS are being identified throughout tumor 

genomes. Interpretation of these VUS poses a significant challenge compared to recurrent 

hotspot variants. Rare, nonrecurrent VUS are unlikely to be the main drivers of initial tumor 

formation, but they have potential to influence progression and response to therapy such as 

by enabling therapy resistance and driving clonal evolution of a tumor after treatment (5). 

Hence, taking such VUS into account when designing a therapy can be critical to clinical 

outcome. Existing approaches to analyze VUS such as genome-wide association studies 

(GWAS) and large-scale pooled functional screens are infeasible for all genes and novel 

variants of interest. GWAS studies in particular have limited power for rare VUS, fail to 

predict the effects of single VUS of interest, cannot identify causality for single VUS, and 

require significant experimental follow-up (6). This represents a significant challenge for 

identifying reproducible, reliable biomarkers with clinical utility (7). The National Human 

Genome Research Institute, the American College of Medical Genetics and Genomics, 

and the Association for Molecular Pathology have emphasized the need for strategies 
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that prioritize VUS for in-depth study using benchmarked, well-controlled, physiologically 

relevant validation assays (3,8).

The variant interpretation challenge posed by rare tumor VUS is illustrated by the 

reported correlation between nucleotide excision repair (NER) activity and tumor sensitivity 

to cisplatin treatment (9,10). NER is the primary repair mechanism for bulky DNA 

adducts such as those introduced by ultraviolet (UV) light and platinum (Pt)-based 

chemotherapeutics like cisplatin (11). Defective NER resulting from nonrecurrent VUS 

in Excision Repair Cross Complementation Group 2 (ERCC2) or from loss of ERCC1 
sensitizes tumor cells to cisplatin and leads to improved patient outcomes (12–15). In 

addition, recent study of The Cancer Genome Atlas (TCGA) Pan-Cancer Atlas has revealed 

that most genetic lesions in NER genes are nonrecurrent nonsynonymous single nucleotide 

variants (SNVs) with unknown impact on therapy sensitivity and cancer patient outcomes 

(16). Based on the studies of ERCC2 tumor VUS (13,14), a subset of the tumor VUS in 

other NER genes is expected to impact tumor cell response to cisplatin and other Pt-based 

chemotherapeutics. However, because NER genes are not known tumor drivers and there are 

few if any recurrent hotspot tumor mutations, NER variant interpretation is challenging.

In this report we implement a novel machine learning approach to predict the NER 

capacity of VUS in Xeroderma Pigmentosum Complementation Group A (XPA), an 

essential scaffolding protein in NER (11,17–19). Germline mutations in XPA result 

in loss of NER and lead to severe phenotypes in patients with inherited Xeroderma 

Pigmentosum (XP) disorder including increased sensitivity to sunlight, predisposition to 

skin cancer, and neurological impairment (20–22). Nearly 200 unique XPA VUS have 

been reported in tumor databases to date. These XPA tumor VUS represent an unstudied 

pool of variants hypothesized to measurably impact NER activity and response to Pt-based 

chemotherapeutics.

Machine learning paired with iterative functional validation is a promising strategy 

to overcome variant interpretation limitations and rapidly provide accurate annotations 

for VUS from tumor genomes without exhausting limited time and resources (1,23). 

Specifically, using an algorithm training strategy termed active learning (also known as 

optimal experimental design in the statistics literature) (24), VUS that are most challenging 

to classify by an initial machine learning model are functionally tested and reincorporated 

with new phenotypic labels in subsequent iterations of algorithm training (25,26). Thus, 

active learning provides the opportunity to train a predictor that can more rapidly 

identify the most impactful variants for further validation while minimizing the degree 

of experimental effort required. After training and validating the model in a preclinical 

laboratory setting, the resulting predictive model could be applied to fully annotate all 

tumor VUS in a gene of interest, to aid clinical decision-making during diagnosis, treatment 

selection, and prediction of patient outcomes.

We first benchmarked an active learning variant interpretation approach with simulations on 

synthetic data and available deep mutational scanning (DMS) data for four cancer-relevant 

proteins, using a logistic regression model trained to predict VUS effect using available 

biochemical, evolutionary, and functional annotations during training. This overall approach 
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was then applied to predict the NER capacity of tumor VUS in XPA, using a limited number 

of labeled NER-deficient and -proficient XPA variants and unlabeled XPA VUS from tumor 

genomic databases. The performance of active learning was compared to traditional learning 

using the XPA dataset by incorporating new variant labels after measuring NER activity 

using a fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR) 

assay. In agreement with the synthetic and DMS simulations, active learning using new 

NER-proficient or -deficient labels derived from FM-HCR improved algorithm performance 

significantly more than traditional learning. These results establish active learning as a 

promising framework for overcoming limited or biased VUS training data and maximizing 

the utility of VUS selected for experimental evaluation.

Materials and Methods

Simulating active learning with synthetic and deep mutational scanning data

Before applying the active learning approach to guide experimental analysis of XPA VUS, 

we evaluated its ability to improve VUS classification for four proteins using data from 

simple synthetic datasets and from deep mutational scanning (DMS). For these simulations, 

synthetic datapoints or DMS variants were present in two classes, and the identity of each 

synthetic datapoint or the phenotype associated with each DMS variant was either included 

as a label or excluded, as for unlabeled datapoints. For clarity, synthetic datasets are termed 

“synthetic data,” the DMS datasets as “DMS variant data,” and the XPA dataset as “XPA 

variant data.”

The initial testing of our approach using synthetic data was motivated by previously 

reviewed examples of active learning (24). The synthetic data were generated from two 

Gaussian distributions centered at [−1, 0, 0] and [1, 0, 0] with a covariance matrix of [[1, 

0, 0], [0, 1, 0], [0, 0, 1]], resulting in a total of 600 datapoints (Supplementary Figure 

S1, Supplementary Table S1). Use of synthetic data with two classes labeled with binary 

values 1 and 0 allowed us to mimic real-world scenarios in which there is an unbalanced 

distribution of variants into two classes, such as classes of functionally proficient or deficient 

variants. This enabled evaluation of the impact of unbalanced datasets on the success 

of active learning before moving to DMS or XPA variant datasets, which are likely to 

exhibit inherently unbalanced “class ratios” between the number of variants in functionally 

proficient or deficient classes.

The approach was also evaluated with DMS variant data for four proteins relevant to cancer: 

phosphatase and tensin homolog (PTEN) (27), thiopurine S-methyltransferase (TPMT) 

(27), Nudix hydrolase 15 (NUDT15) (28), and cytochrome P450 family 2 subfamily C 

member 9 (CYP2C9) (29). These were selected because in each case variant effect on 

protein cellular abundance had been assayed using variant abundance by massively parallel 

sequencing (VAMP-seq) (Supplementary Table S2). Features to classify variants in these 

four proteins were compiled from the existing Database of Human Nonsynonymous SNPs 

and their Functional Predictions (dbNSFP) v4.0a (30). From dbNSFP, 19 scores were 

considered, encompassing physical and biochemical properties of amino acid sidechains 

(Grantham), sequence homology (SIFT, Polyphen2, PROVEAN), evolutionary sequence 

conservation (LRT, MutationAssessor, GERP, phyloP, phastCons, ConSurf), computational 
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pathogenicity metrics based on protein stability, protein secondary structure elements, and 

disease-association (MutationTaster, FATHMM, VEST4, MPC, CADD), as well as ensemble 

predictors (MetaSVM, MetaLR, REVEL, MVP). Any DMS variants with missing values 

were excluded from our analyses, so the resulting feature matrix was not missing any 

values. However, we note that if missing values were encountered during application of this 

approach to other datasets, the ‘mice’ package in R is a suitable strategy to statistically 

impute missing values prior to model training (31). A principal component analysis (PCA) 

of the feature matrix was performed and the first three principal components were used as 

input features of the logistic regression model. Inclusion of a fourth principal component did 

not significantly alter the results (Supplementary Figure S2A–C).

In both simulation analyses, training was initiated with either ten labeled synthetic 

datapoints or ten labeled DMS variants, with the remaining datapoints treated as unlabeled. 

For the synthetic data, scenarios were simulated where the distribution of classes (0s and 

1s) in the subset of labeled data used for training were balanced (e.g., a 1:1 class ratio) 

or skewed (e.g., a 1:5 class ratio) and where the overall distribution in the whole dataset 

of labeled and unlabeled datapoints was either balanced or skewed. For the DMS variant 

data, the class ratios for the overall datasets are reported in Supplementary Table S2, and 

scenarios were simulated where the labeled variants used for training were present in either 

balanced or skewed ratios of deleterious and neutral variants. To evaluate the performance 

of the models during each training iteration, held-out test sets were created using 10% of 

each dataset and maintaining the same class ratio as the overall class ratio for each. For each 

simulation, a logistic regression model was trained on the initial dataset and the model was 

used to make predictions on the synthetic datapoints or DMS variants in the unlabeled pool.

The active learning approach was then tested using these initial models. The five most 

uncertain predictions (with predicted class probabilities closest to 0.5) were selected, 

labeled, and added to the pool of labeled synthetic datapoints or DMS variants. In the 

traditional learning approach, five synthetic datapoints or DMS variants were selected 

randomly, labeled, and added to the labeled pool. The logistic regression model was 

retrained using the updated labeled pool. For a subset of the data, we also tested 

incorporation of three or seven datapoints during each round of training. This procedure was 

iterated 20 times to monitor the evolution of model performance as more labeled datapoints 

were added following the two different active and traditional learning strategies. Model 

performance was measured by the F1 score on the held-out test sets:

F1 = 2 × precision×recall
precision+recall

where

precision = TP
TP + FP

and
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recall =   TP
TP + FN   .

The F1 score was selected because it accounts for both precision and recall and maintains 

a balance between them. Because both precision and recall must be high for the final F1 

score to be high, this metric is well-suited for variant datasets that can exhibit an imbalance 

between the number of samples in each class. Two additional commonly used metrics,

accuracy = TP + TN
TP + FP + TN + FN

and

MCC = TP × TN − FP × FN
TP + FP TP + FN TN + FP TN + FN

were also used to evaluate and compare model performances. MCC: Matthews correlation 

coefficient. In all performance metrics, TP is the number of true positives (low-abundance 

variants), FP is the number of false positives (wild-type like variants predicted to be low-

abundance) and FN is the number of false negatives (low-abundance variants predicted to be 

wild-type like).

Training a logistic regression model to predict NER activity of XPA VUS

XPA variants were curated from published literature and tumor genomics databases: 

The NCI Genomic Data Commons Pan-Cancer Atlas, cBioPortal for Cancer Genomics, 

the Catalogue of Somatic Mutations in Cancer (COSMIC) v90, the Cancer Cell Line 

Encyclopedia (CCLE), AACR Project GENIE v7.0, and the International Cancer Genome 

Consortium (ICGC) data release 28. The final set of 73 tumor VUS curated from available 

genomics databases included only somatic single nucleotide variants (SNVs) from unique 

tumor samples. An additional 16 VUS were curated from the literature and were either 

reported without cell survival or cell-based repair activity data or had conflicting reports 

between studies. All 19 variants labeled as NER-proficient or NER-deficient were labeled 

based on reported cell survival after UV treatment or cell-based NER activity data.

As described for variants in the DMS datasets, each XPA variant was encoded with a 

set of 19 features that consisted of evolutionary metrics and variant scores generated by 

pre-existing variant pathogenicity predictors (30). All variants analyzed in this study and the 

associated references and reported data are provided in Supplementary Tables S3 and S4. 

XPA is listed under UniProt ID: P23025; RefSeq (RRID:SCR_003496) accession number: 

NM_000380.3.

Similar to analysis of the synthetic and DMS variant datasets, several features were 

highly correlated (Supplementary Figure S3). A PCA of the feature matrix was performed 

(Supplementary Figure S4). The first three principal components were used as input features 

of the logistic regression model considering that the initial training set is very small, and the 
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first three principal components explained the majority of the variance in the data (73.3%) 

(Supplementary Figure S5A–B). The model was developed using the implementation in the 

scikit-learn machine-learning framework (RRID:SCR_002577) (32). The XPA dataset and 

resulting feature matrix were not missing any values, and so statistical imputation of missing 

values was not performed.

The use of a semi-supervised learning algorithm was also explored to predict the NER 

activity of XPA VUS. A popular approach to semi-supervised learning is to create a graph 

that connects training datapoints based on their pairwise distances in the input space. Known 

labels are then propagated through the edges of the graph to predict the labels of unlabeled 

datapoints (33). This approach has the advantage of simultaneously using both labeled 

and unlabeled datapoints during training, compared to supervised learning algorithms. A 

semi-supervised label spreading model with a default KNN kernel (34) was trained with the 

same XPA variant feature matrix used to train the logistic regression model, implemented in 

the scikit-learn machine-learning framework (32).

Logistic regression XPA variant effect predictor with active learning and statistical 
analyses to compare against traditional learning

The initial logistic regression model was trained for XPA variant effect classification with 

the 19 variants noted above, labeled according to NER activity reported in the literature. 

To apply the active learning strategy to XPA, this initial model was first used to predict the 

class probabilities of the remaining VUS in the dataset. For the top ten VUS with the least 

certain predictions, i.e., probabilities closest to 0.5, (L138R, R207G, H242L, D70H, E111A, 

R227W, M98I, D154A, T125A, E106G, ordered from least to more certain), NER activity 

was measured by FM-HCR for seven VUS (L138R, H242L, D70H, E111A, D154A, T125A, 

E106G). In the FM-HCR analysis, VUS with NER activity significantly lower than that of 

wild-type XPA, with p < 0.05 by unpaired t tests, were labeled NER-deficient. Labeling of 

these assayed variants was blinded from their class probabilities predicted by the logistic 

regression model. To test the hypothesis that active learning improves the performance of 

XPA variant effect prediction more than traditional learning, a logistic regression model was 

retrained using a training set consisting of the initial 19 labeled variants plus the seven VUS 

the initial model was least certain about, labeled according to their NER activity. This was 

termed the “active model”.

In parallel, the NER activity was measured by FM-HCR for an additional set of 20 VUS 

consisting of (i) variants well separated in the PCA scatter plots and (ii) variants located 

in the region where the two classes are believed to overlap (Supplementary Figure S4). A 

logistic regression model was then trained using a training set consisting of the initial 19 

labeled variants plus seven variants randomly selected from the total pool of 27 FM-HCR 

assayed variants. This was termed the “traditional model”. Next, the active and traditional 

model performances as measured by F1 scores were compared for the remaining FM-HCR 

assayed variants that were not selected for training. Due to the stochasticity in selecting 

variants to train the traditional model, the procedure was repeated 100 times. To enable a 

fair comparison, the performances of the active and traditional models were computed based 

on the same evaluation set in each iteration. Additionally, the performances of six sequence-
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based variant effect predictors or sequence conservation metrics were also evaluated in 

each iteration. Statistical significance of the improvement achieved with active learning was 

assessed with the Mann Whitney U test. Accuracy and MCC scores were also calculated 

and compared. For the final XPA active learning model, we also calculated the weighted 

contributions of each feature (Supplementary Figure S6).

Full-length XPA structural model

XPA is a modular protein with two unordered regions at the N- and C-termini, which 

precludes an accurate representation of the 3D structure of the full-length protein in a single 

image. To display VUS predictions in the context of the XPA protein structure, a structural 

model of full-length XPA was generated based on reported XPA structures and integrative 

models (35–39). Starting with the coordinates of the globular XPA DNA binding domain 

(residues 98–239, PDBDEV00000039) (36), Rosetta FloppyTail (40) was used to model 

the flexible regions of XPA spanning residues 1–97 and 240–273. Default settings were 

used except that the perturbation cycles and models sampled parameters were increased 

to 1000 and 10 for each floppy tail, respectively. Graphical representations and images 

were generated using PyMOL Molecular Graphics System, version 2.0.7, Schrödinger, LLC 

(RRID:SCR_000305).

Cell lines and cell culture

XP2OS cells (RRID:CVCL_3242) were kindly provided by Dr. Orlando Schärer in 

2019 (Center for Genomic Integrity, Institute for Basic Science, Ulsan National Institute 

of Science and Technology, Korea). Cells were maintained in DMEM (Thermo Fisher 

Scientific #11995073) supplemented with 10% FBS (Thermo Fisher Scientific #A3160502) 

and 1% Penicillin-Streptomycin (Thermo Fisher Scientific #15140122) and did not exceed 

30 passages from time of thawing. No mycoplasma contamination was detected in this 

cell line throughout the experiments, with most recent testing conducted on March 2021 

prior to completion of the FM-HCR studies in May 2021 (SouthernBiotech #13100–01). 

XPA expression plasmids contain full-length human XPA (NM_000380) with the indicated 

mutations in the pcDNA3.1(+) backbone (GenScript custom order).

FM-HCR assay

Fluorescence multiplex host cell reactivation (FM-HCR) was used to assay NER activity in 

XPA-deficient XP2OS cells transiently expressing selected XPA variants. In this assay, a 

UV-damaged fluorescent reporter is only expressed efficiently in NER-proficient cells that 

can repair the UV lesions in the reporter gene (41). The relative reporter expression in 

each cell line provides a quantitative measure of NER activity. Reporter plasmids were 

prepared as a cocktail containing pMax_GFP plasmid damaged with 800 J/cm2 UVC 

radiation (herein referred to as pMax_GFP_UV) and an undamaged pMax_BFP control. An 

undamaged cocktail containing pMax_GFP and pMax_BFP was also utilized as a positive 

control. XP2OS cells (RRID:CVCL_3242) were harvested by trypsinization and pelleted via 

centrifugation. Cell pellets were washed with DPBS (Thermo Fisher Scientific #14190–144) 

and resuspended in DMEM (Thermo Fisher Scientific #11995073) supplemented with 10% 

FBS (Thermo Fisher Scientific #A3160502) to a final density of 2 × 106 cells/mL. XP2OS 

cells were transfected with 200 ng of plasmid containing the XPA variant of interest or 
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wild-type XPA as well as the FM-HCR reporter plasmids using the Gene Pulser MXCell 

Plate Electroporation System (Bio-Rad Laboratories #165–2670). Plate electroporation was 

performed at 260 V, 950 μF.

FM-HCR analyses were performed as previously described (41,42). Briefly, fluorescence 

was measured via an Attune NxT Flow Cytometer (Thermo Fisher Scientific) 

(Supplementary Figure S7A–C). Percent reporter expression values representing the NER 

capacity of cells transiently transfected with plasmids encoding each XPA variant were 

determined as follows. Fluorescent signal (F) was calculated using:

F = N × MFI
S

where N represents the total number of live cells appearing in the positive region for the 

fluorophore, MFI is the mean fluorescence intensity of the N cells, and S is the total number 

of live cells. The normalized fluorescence signal for a given reporter FO was calculated 

using:

FO = F
FE

where FE represents the fluorescence signal from the reporter protein expressed from an 

undamaged plasmid. The percent reporter expression (%R.E.) was calculated using:

%R . E . =
Fdam

O

FunO × 100

where Fdam
O  represents normalized reporter expression from a damaged reporter plasmid and 

Fun
O  represents normalized reporter expression from the same reporter plasmid in the absence 

of damage. Percent reporter expression for each XPA variant was then normalized to that of 

wild-type XPA. Unpaired t-tests were performed for each wild-type and XPA variant pair (n 

= 3 biological replicates) using GraphPad Prism 9 (RRID:SCR_002798).

Data Availability

The data generated in this study are available within the article and its supplementary files. 

All code files are available as Jupyter Notebooks in the supplement with accompanying 

source data as well as on Code Ocean (https://codeocean.com/capsule/8987578).

Results

Active learning improves variant effect predictions for proteins with diverse functions

Active learning is a machine learning approach that incorporates iterative rounds of training 

and guided label determination. Here, VUS with the most uncertain predictions about their 

effect on protein activity (i.e., the response variable) from an initial model are functionally 
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validated, then the resulting data are used to newly label the tested variants and the algorithm 

is retrained (Figure 1). During each round of active learning (i) an initial algorithm is 

trained, (ii) variants with the least certain predictions are identified, and (iii) functional 

validation for the subset of least certain variants is performed. New labels are then assigned 

to the assayed variants and used to inform a subsequent round of training, at which point 

the cycle repeats until high performance is achieved. Accurate predictions may thus be 

generated using fewer rounds of training and label determination than other strategies for 

increasing training data (43).

To test the efficacy of this proposed active learning approach before using it to guide 

interpretation and experimental analysis of XPA VUS, a series of simulations was performed 

comparing active and traditional learning on two types of data: (i) synthetic data generated 

from Gaussian distributions containing two binary classes of datapoints and (ii) real variant 

effect data from pre-existing DMS analyses. DMS quantifies the effects of every possible 

amino acid substitution within a protein in cells and provides disruptive or nondisruptive 

molecular phenotype labels for each variant. Within the DMS variant data, we focused on 

four proteins with known roles in tumor suppression, progression, or therapeutic response: 

PTEN (27), TPMT (27), NUDT15 (28), and CYP2C9 (29).

For each type of data, an uncertainty sampling strategy (active learning) was compared to a 

random sampling strategy (traditional learning) (Figure 2A). The impact of active learning 

was evaluated based on the performance of a logistic regression model (26), but we note 

that other algorithms could be used within the active learning framework. In a real-word 

scenario, the set of labeled data available for training the initial iteration of the algorithm 

will often come from variants previously tested and reported in the literature. Thus, the 

distribution of initial training data between the two possible binary classifications for each 

variant may not reflect the overall ratio for all possible variants in the protein. This was true 

for the DMS variant data, where each protein of interest exhibited varying ratios between 

the number of variants with wild-type or protein-deficient phenotypes (Supplementary Table 

S2). To reflect this reality in our simulations, differing class ratios of labeled variants 

were tested in the initial labeled training sets and changes in algorithm performance were 

measured over 20 iterations of active and traditional learning. During active learning, 

synthetic datapoints or DMS variants with the most uncertain predictions were identified 

and labeled based on the binary class to which they belonged.

Active learning achieved stronger performance than traditional learning in nearly all 

scenarios (Figure 2B–E, Supplementary Figures S8A–C, S8E–G, S8I–K, S9A–I, and S10A–

J). For example, in the PTEN DMS variant dataset, active learning outperformed traditional 

learning by a mean F1 score of 0.052 across the 20 iterations (p = 3.44 × 10−14, two-sided 

paired t-test) (Figure 2E). Similar improvement of active learning over traditional learning 

was achieved in all other simulations except in two exceptional scenarios. In the first, the 

class ratios of the initial pool of datapoints (5:1 or 7:3) were heavily skewed opposite to 

the overall class ratios of the whole datasets (1:5 or 1:1.9) (Supplementary Figures S8D and 

S8H). In the second, for CYP2C9 (Supplementary Figures S8L–N), active learning provided 

notable benefits in the early training iterations with the most limited proportions of labeled 

data, although this benefit decreased in later iterations as larger proportions of training data 

Blee et al. Page 10

Cancer Res. Author manuscript; available in PMC 2023 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were labeled. Nevertheless, using active learning to train a variant effect predictor enabled 

flexible integration of pre-existing phenotypic data and reduced the time and resources 

needed to improve predictions. Given these positive results, we next applied a similar active 

learning approach to XPA tumor VUS.

Prediction of XPA VUS effects on NER

As an essential NER scaffolding protein, XPA performs two key functions during repair: (i) 

DNA binding at the junction between single-strand and double-strand DNA that is formed 

upon opening of the ‘repair bubble’ (17–19), and (ii) interaction with multiple proteins 

that constitute the NER machinery (11,36,44–47) (Figure 3A). Previous functional study of 

specific XPA variants, such as those variants known to cause the germline inherited disorder 

XP, were used to classify and assign labels to an initial training dataset with 19 labeled 

variants (8 NER-proficient and 11 NER-deficient). An additional 89 unlabeled VUS were 

curated primarily from publicly available tumor genomic databases to comprise the rest of 

the dataset (Figure 3B; Supplementary Tables S3 and S4).

Following the approach used for analysis of DMS variant data, 19 features for each 

XPA variant were compiled from dbNSFP including amino acid properties, sequence 

similarity, evolutionary sequence conservation, computational variant pathogenicity, and 

ensemble scores. The features exhibited substantial variability across variants (Figure 

4A; Supplementary Figure S3). Inspection of the ability of these scores to distinguish 

known NER-deficient and -proficient XPA variants revealed clear room for improvement 

(Supplementary Table S5), further emphasizing the need for an approach that incorporates 

functional data specific to the protein and phenotype of interest.

Given the limited amount of training data for XPA, the dimensionality of the initial 

feature set was reduced using principal component analysis (PCA) before training a logistic 

regression model (Supplementary Figures S4 and S5A–B). Mapping the initial predictions 

as the probability of being classified NER-deficient onto the PCA of the variant features 

revealed clusters of high-confidence predicted NER-proficient and -deficient variants, with 

a population of lower confidence predictions at the boundaries between clusters (Figure 

4B). While our primary objective was to evaluate the performance of active learning rather 

than conduct an exhaustive comparison of predictive models within the active learning 

framework, other algorithms could be used within an active learning framework. We note 

that similar patterns were observed when making predictions using a semi-supervised label 

spreading algorithm (34,48,49) to analyze the XPA dataset (Supplementary Figure S11A–C; 

Supplementary Tables S6 and S7). All subsequent analysis focused on the logistic regression 

model because the class probability metric enabled easy selection of variants for functional 

validation.

The NER-deficient class probability for each variant was mapped onto a structural model of 

XPA to aid in interpreting and evaluating the initial predictions. For example, coordination 

of a zinc atom by cysteine residues 105, 108, 126, and 129 is required for the structural and 

functional integrity of XPA (50). Hence, tumor VUS such as C126W and VUS in adjacent 

residues were predicted to be NER-deficient (Figure 4C). In contrast, mutagenesis studies 

have demonstrated that single mutation of residues along the large DNA binding surface 
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of the XPA DBD are sometimes insufficient to abrogate DNA binding and NER activity 

(51,52), and fewer VUS on this surface were predicted to be NER-deficient (Figure 4C). 

Similarly, H244R, C261S, and C264S in the flexible C-terminus have been shown to be 

NER-deficient, and the nearby tumor VUS H242L was predicted to also be NER-deficient 

(Figure 4C). These results demonstrate the potential of variant effect prediction for XPA 

VUS. Moreover, by incorporating functional repair activity data into the model, such variant 

mapping can be used to generate hypotheses for specific mechanisms of dysfunctional 

repair, information that cannot be obtained from purely sequence-based variant effect 

predictor tools.

Active learning using functional validation improves variant effect predictions for XPA

To determine the effect of incorporating functional validation into our approach, 27 VUS 

were selected for functional validation by FM-HCR, a high-throughput host cell reactivation 

assay to quantify NER capacity (41) (Figure 5A). These VUS spanned the spectrum of 

prediction confidence, enabling evaluation of algorithm performance and comparison of 

active learning with traditional learning. This set included seven of the ten VUS with least 

certain class probabilities from the initial logistic regression model and an additional 20 

VUS for evaluation of model performance.

The XPA VUS selected for FM-HCR were transiently overexpressed in XPA-deficient 

XP2OS cells (53), together with a UV-damaged green fluorescent protein (GFP)-expressing 

reporter. Successful NER of the UV-damaged reporter in NER-proficient cells can be 

detected and quantified by flow cytometry (Figure 5A). As anticipated, XPA-deficient 

XP2OS cells had very little GFP reporter expression relative to XP2OS cells rescued 

with wild-type (WT) XPA (Figure 5B). Several variants rescued NER activity to a similar 

degree, but not significantly beyond that of WT XPA, providing assurance that cells 

transiently complemented with different expression constructs can achieve similar levels 

of NER capacity as WT (Figure 5B). The FM-HCR results also revealed a gradient of 

NER deficiency resulting from a subset of variants. As predicted, profound NER defects 

were observed upon substitution of residues that coordinate the zinc ion, such as C126 

(Figure 5B). Notably, many variants predicted to be deleterious by pre-existing predictors 

were not associated with significant NER-deficiency as assayed by FM-HCR and vice 

versa (Supplementary Table S8). Comparison of our initial algorithm predictions with these 

functional data also revealed room for improvement and provided the basis for an iterative 

active learning approach (Supplementary Table S9).

To evaluate the active learning approach on XPA, the logistic regression model was retrained 

using 26 labeled training variants: the original 19 training set variants from the literature 

and seven VUS from the group least confidently predicted by the initial model added using 

the newly assigned NER-proficient or -deficient labels from the FM-HCR analysis. The 

active learning model was compared to 100 traditional learning models trained using the 

original 19 labeled variants plus seven variants randomly selected from the variants assayed 

by FM-HCR. To enable a fair comparison, we computed the F1 score, Matthews correlation 

coefficient (MCC), and accuracy scores for the active learning model on the same held-out 
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variants as each of the 100 traditional learning models. Thus, we obtained 100 F1, MCC, and 

accuracy scores for both the active and traditional learning approaches.

Consistent with our hypothesis, the active learning model performed significantly better than 

the traditional learning model (mean F1 score 0.752 vs. 0.650 for 100 trials, p = 3.8 × 10−10, 

Mann Whitney U test) (Figure 6). This held regardless of the performance metric used 

(Supplementary Figure S12A–B). Sequence conservation and ensemble predictor features 

contributed most to the final XPA prediction models (Supplementary Figure S6). The FM-

HCR results were also used to measure the performance of pre-existing variant prediction 

tools on the XPA dataset. Our active learning approach performed better than all tested tools 

(Figure 6; Supplementary Figure S12A–B). However, we note that some of these tools were 

also used in the features for the active learning and traditional regression models.

The improvement in performance for active over traditional learning illustrates that active 

learning is practical and beneficial in real-life situations where the amount of initial training 

data is small and obtaining additional labels is costly and laborious.

Discussion

Our analyses of synthetic, DMS variant, and real-world XPA variant data demonstrate 

that targeted functional validation focused on variants that are refractory to algorithmic 

classification, a hallmark of active learning, can address current variant interpretation 

challenges. Functional validation is increasingly recognized as a centerpiece of variant 

interpretation (3,8,54), and active learning provides an efficient framework to guide the 

selection and incorporation of validation data for maximal impact. Screening out variants 

unlikely to be informative and prioritizing others for follow-up avoids wasted experimental 

effort and has the potential to more rapidly identify variants with functional effects. 

Because it bases variant predictions on specific functional outputs, this strategy is ultimately 

anticipated to provide deeper mechanistic insight into variant effect than sequence- and 

pathogenicity-based scores or ensemble predictors. These analyses can provide the basis for 

future work to predict, screen, and conduct in-depth studies of XPA VUS that reduce NER 

activity and sensitize cells to cisplatin.

The analyses of synthetic and DMS variant data identified a few discrete examples where 

active learning failed to significantly improve performance compared to traditional learning. 

Notably, this occurred in scenarios with class ratios for the overall dataset that were heavily 

skewed opposite to the subset of labeled training datapoints (Supplementary Figures S8D 

and S8H). This finding reveals a limitation in how sparse or biased the initial training dataset 

can be while still generating accurate predictions. It also suggests that active learning cannot 

fully overcome severe under-representation of variant classes in the training set that are more 

prevalent in the overall data. However, given that the sources of labels used for training are 

known, it should be possible to foresee when there is likely to be a substantial ascertainment 

bias that could decrease the utility of active learning. The results for the CYP2C9 DMS 

variant data also hint that the success of active learning may be context dependent. While 

active learning showed improvement over traditional learning for CYP2C9 during the early 

iterations with the most limited proportion of labeled training data, which likely reflects 
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most real-world scenarios, improvement was small in later rounds (Supplementary Figures 

S8L–N). More thorough exploration of DMS variant and other data will be necessary to 

clearly define the scenarios in which active learning is most beneficial.

We have demonstrated that active learning can be successfully applied using inputs derived 

from either functional data or computational predictions of functional significance to 

improve variant effect predictions. This is a central strength, particularly because active 

learning can also be easily extended to include additional phenotypic data of interest such 

as protein structural data and other functional assays, which would both be expected to 

improve predictive performance. Using phenotypic data such as drug sensitivity to validate 

variant labels during training represents one future area of exploration that may allow for the 

generalization of this approach to other proteins or protein complexes.

Improved performance of XPA variant interpretation is anticipated with higher quality and 

consistency of labels for training. The initial XPA variant training labels used here were 

derived from published results of different cell-based assays from various research groups 

and the specific variants were selected subjectively. Starting with standardized, quantifiable 

FM-HCR analyses to derive accurate labels for the entire initial training set is expected 

to greatly improve predictive performance. Future studies will include updating the model 

by retraining with XPA variants labeled solely by high quality FM-HCR analysis and 

conducting additional iterations of active learning. Incorporating deeper insights into the 

structure and mechanisms of the NER machinery into training is also anticipated to increase 

the performance of VUS interpretation. This information will also enable the development 

of hypotheses about mechanisms of NER dysfunction, which in turn can be tested and 

refined using cell-based, biochemical, biophysical, and structural analysis.

Our analyses underscore that single XPA tumor VUS have the potential to abrogate NER 

activity in cells, irrespective of other genetic events. However, there are many VUS in NER 

proteins within the same tumor samples that could influence NER activity; tumor cells are 

complex and variant interpretation should consider all potentially relevant variants in an 

individual (16). Nonetheless, even with these limitations, the active learning strategy based 

on functional NER activity data shows significant promise for XPA variant interpretation. 

One goal on the horizon is to better understand and predict tumor cell drug sensitivity using 

higher performing models to identify XPA variants as biomarkers for cisplatin response. 

This would involve directly testing repair of cisplatin-induced lesions in cells expressing 

tumor VUS. Ultimately, this machine learning approach and future improved versions are 

anticipated to enable prediction of the cisplatin response in cells expressing a broad range of 

NER VUS.

Active learning can overcome common challenges posed by small training datasets, enable 

the selection of a feasible number of VUS for validation, and maximize the performance 

gains provided by cell-based functional validation. Providing a fast, feasible training 

strategy for a variant effect predictor that incorporates data on variant protein function 

during training will bring us one step closer to achieving the high level of accuracy 

and reproducibility required to inform clinical decision-making. Using accurate variant 

annotations that result from such a predictor, cancer therapies may be tailored based on the 
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specific variants present in a tumor. For example, in tumors with predicted NER-deficient 

variants, a Pt-based chemotherapeutic would be anticipated to provide better response than 

for tumors with few or no NER-deficient variants and for which a different treatment 

strategy would be more appropriate. By providing actionable insights into VUS, this 

approach has the potential to contribute to the implementation of cancer precision medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

A novel machine learning approach predicts the impact of tumor mutations on cellular 

phenotypes, overcomes limited training data, minimizes costly functional validation, and 

advances efforts to implement cancer precision medicine.
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Figure 1. Schematic of the active learning approach to variant interpretation.
First, a machine learning algorithm is trained on a set of labeled variants. Next, a subset 

of VUS with the lowest confidence predictions are selected and functionally validated. 

These newly labeled variants are then incorporated in the subsequent iteration of algorithm 

training. The algorithm can be retrained until predictive performance plateaus or increases 

only incrementally. In the diagram, NER-deficient variants are shown mapped onto a 3D 

protein structure and labeled with D, NER-proficient variants with P, and unlabeled VUS 

with ‘?’. The color spectrum from proficient in green to deficient in pink indicates the 

confidence of the prediction (probability deficient) for each variant. Solid green circles 

represent known proficient variants, solid pink circles represent known deficient variants, 

solid grey circles represent VUS. Transparent colored circles represent VUS after initial 

algorithm predictions, where the color indicates predicted P(deficient).
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Figure 2. Active learning results in more accurate models compared to traditional learning on 
synthetic and deep mutational scanning data.
A, Schematic representation of the simulation protocol to compare active learning that 

uses an uncertainty sampling strategy to prioritize variants for functional validation versus 

traditional learning that uses a random sampling strategy. The mean F1 score was used to 

compare active and traditional learning for: synthetic datasets with balanced class ratios 

(1:1) in both the overall data and the initial labeled training set in B (p = 1.27 × 10−10, 

two-sided paired t-test), or skewed class ratio (1:5) in both the overall data and initial labeled 

training set in C (p = 8.75 × 10−13, two-sided paired t-test); and a PTEN DMS variant 

dataset with a balanced class ratio (1:1) in the initial labeled training set in D (p = 2.55 × 

10−7, two-sided paired t-test), or a skewed class ratio (2:3) in the initial labeled training set 

in E (p = 3.44 × 10−14, two-sided paired t-test). Error bars indicate 95% confidence intervals 

around the mean F1 score. All initial labeled pools had ten datapoints or variants to start 

except for the skewed synthetic dataset in B, which had 12 datapoints to maintain the 1:5 
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ratio with sufficient starting numbers of datapoints in both classes. Orange indicates active 

learning results. Blue indicates traditional learning results. Similar results were obtained 

when incorporating labels for either the three or seven most uncertain variants during 

each training iteration (Supplementary Figures S9, S10). See Supplementary Table S2 for 

additional details regarding the composition of the PTEN dataset.
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Figure 3. XPA contains many VUS and few functionally characterized variants.
A, Schematic representation of the XPA protein with variants and partner protein interaction 

regions (horizontal lines) mapped across the sequence. The locations of NER-deficient 

or -proficient variants as well as VUS are indicated with triangles. B, Diagram outlining 

the sources of variants and labels used for training the initial variant effect prediction 

algorithm. XPA DBD indicated in light blue, nuclear localization signal (NLS) in light 

yellow, and zinc-coordinating residues in light pink bars. Gold triangles represent XPA 

VUS. Orange triangles indicate known NER-deficient variants. Blue triangles represent 

known NER-proficient variants.
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Figure 4. Logistic regression model to predict NER-deficient variants.
A, Heatmap of pairwise Spearman’s rank correlations of five representative features for each 

XPA variant. Features shown include one predictor from a representative set of methods 

(Grantham, SIFT, ConSurf, MutationTaster, MetaSVM). The color spectrum from 0.0 in 

blue to 1.0 in red indicates the Spearman’s correlation coefficient for each pair of features. 

B, Effects of XPA VUS on NER activity predicted by the logistic regression model. Input 

features are the first three principal components from a principal component analysis (PCA) 

of the original set of 19 features from dbNSFP. VUS selected for functional validation are 

outlined in black: D5Y, G6R, A18S, R30W, A60T, D70H, G72E, G73E, P94L, E106G, 

K110E, E111A, F112C, M113I, D114Y, T125A, C126W, C126Y, R130I, L138R, Y148D, 

D154A, F164C, V234M, H242L, R258C, and K272N. The color spectrum from green to 

pink indicates the confidence of the prediction (probability NER-deficient) for each variant. 

Variance explained by each principal component is indicated in parentheses along each 

axis. C, Model of full-length XPA with variants of interest depicted as spheres and colored 

according to the scheme in B (top). The precise fold and orientation of the flexible N- 

and C-termini regions are not known and are shown only for representative purposes. The 

bottom panel shows a schematic diagram of XPA and the location of the XPA DNA binding 

domain.
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Figure 5. FM-HCR to test NER capacity of selected XPA VUS.
A, Diagram of FM-HCR assay in XPA-deficient XP2OS cells. Cells transfected with UV-

damaged fluorescent reporters as well as either empty, WT XPA, or XPA VUS expression 

vectors are analyzed by flow cytometry to detect fluorescent reporter expression. Successful 

NER results in fluorescent reporter repair and expression (top), which is not observed 

in cells lacking functional XPA (bottom). Green indicates the GFP reporter gene in the 

expression vector and in cells with successful NER. B, Bar graph showing relative reporter 

expression in cells expressing empty vector (EV) or WT XPA in darkest grey, or the 

27 VUS selected for validation. Seven of the top ten VUS with the least certain class 

probabilities (light grey) were tested, as well as 20 other VUS for further evaluation 

(grey). Damaged reporter expression was normalized to an undamaged control reporter to 

account for transfection efficiency. The percent reporter expression for each variant was 

normalized to that determined for WT to generate the final relative reporter expression (n = 

3 biological replicates). Error bars indicate standard deviation from the mean. Seven of the 

VUS analyzed maintained significantly decreased repair capacity when compared to WT. * 

signifies p < 0.05, unpaired t test.
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Figure 6. Active learning improves predictions of XPA variant NER capacity.
Plot of F1 scores comparing the performance of logistic regression-based active versus 

traditional learning on the XPA dataset. Active learning performs significantly better than 

traditional learning (p = 3.8 × 10−10, Mann Whitney U test for active versus traditional 

learning). Both the active and traditional learning strategies were repeated 100 times. 

Performance of active learning was also significantly better than that of several common 

variant effect predictors: GERP (p = 7.1 × 10−34, Mann Whitney U test), phyloP (p = 6.1 × 

10−32, Mann Whitney U test), PROVEAN (p = 1.4 × 10−28, Mann Whitney U test), ConSurf 

(p = 5.4 × 10−28, Mann Whitney U test), SIFT (p = 1.2 × 10−28, Mann Whitney U test), and 

FATHMM (p = 2.5 × 10−4, Mann Whitney U test). Methods are ordered on the horizontal 

axis by increasing average performance, where red indicates lowest average performance 

and dark blue indicates highest average performance.
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