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Identifying digenic disease genes via machine
learning in the Undiagnosed Diseases Network
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Summary
Rare diseases affect millions of people worldwide, and discovering their genetic causes is challenging. More than half of the individuals

analyzed by the Undiagnosed Diseases Network (UDN) remain undiagnosed. The central hypothesis of this work is that many of these

rare genetic disorders are caused by multiple variants in more than one gene. However, given the large number of variants in each in-

dividual genome, experimentally evaluating combinations of variants for potential to cause disease is currently infeasible. To address this

challenge, we developed the digenic predictor (DiGePred), a random forest classifier for identifying candidate digenic disease gene pairs

by features derived from biological networks, genomics, evolutionary history, and functional annotations.We trained the DiGePred clas-

sifier by using DIDA, the largest available database of known digenic-disease-causing gene pairs, and several sets of non-digenic gene

pairs, including variant pairs derived from unaffected relatives of UDN individuals. DiGePred achieved high precision and recall in

cross-validation and on a held-out test set (PR area under the curve > 77%), and we further demonstrate its utility by using digenic pairs

from the recent literature. In contrast to other approaches, DiGePred also appropriately controls the number of false positives when

applied in realistic clinical settings. Finally, to enable the rapid screening of variant gene pairs for digenic disease potential, we freely

provide the predictions of DiGePred on all human gene pairs. Our work enables the discovery of genetic causes for rare non-monogenic

diseases by providing a means to rapidly evaluate variant gene pairs for the potential to cause digenic disease.
Introduction

Causal genetic variantshavebeen identified for thousandsof

Mendelian diseases.1–3 However, in spite of the advent of

cheaper and more accurate sequencing technologies, causal

variants have not been identified for approximately half

(�3,000) of known rare genetic diseases.4–6 To help address

this challenge, the NIH established the Undiagnosed Dis-

eases Network (UDN) in 2014. Comprising teams of

researchers and clinicians from 12 sites across the

United States, the UDN integrates whole-exome/genome

sequencing with expert clinical evaluation to develop diag-

noses and treatment plans for individuals who could not

be diagnosed by conventional clinical approaches.7–9

Although this approach has yielded much success,10–21

more thanhalf of allUDNcases remainundiagnosed.Wehy-

pothesize that many of these unsolved, rare cases might

involvevariants inmultiplegenes thatonly result inadisease

phenotype when combined, which complicates diagnosis.

Variants in multiple genes can synergistically lead to dis-

ease via different mechanisms.22–25 Digenic inheritance

was first demonstrated in 1994, when concurrent muta-

tions in two genes were found to cause retinitis pigmen-
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tosa.26 Digenic inheritance is the simplest form of oligo-

genic inheritance in which variants in multiple genes

lead to disease.27–29 There are various classifications of di-

genic disease,30 but in all cases of digenic inheritance,

the phenotype results from variants in two genes. In isola-

tion, the individual variants that form a digenic pair are

benign or lead to a simpler phenotype. However, upon

simultaneous mutation, the variants either interact to pro-

duce disease or combine to produce a more complex, and

usually more severe, phenotype that cannot be explained

by variants in one gene alone.

The Digenic Diseases Database (DIDA)28 has chronicled

several hundred cases of digenic disease. Analyses of

DIDA have revealed that digenic-disease-causing gene

pairs are more likely to functionally and/or physically

interact with one another than expected by chance.28 Ma-

chine learning approaches have been developed for distin-

guishing between different types of digenic disease pairs31

and identification of disease-causing variant combina-

tions,32,33 including oligogenic combinations of greater

than two genes.34

Wehypothesize that thediseasephenotype in someunre-

solved rare-disease-affected individuals is most likely a
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result of digenic inheritance and develop the digenic pre-

dictor (DiGePred), a high-throughput machine learning

tool for evaluating the likelihood that dysfunction of gene

pairs leads to digenic disease. We focus on the specific chal-

lenge of identifying gene pairs that have functional or

phenotypic potential to cause a digenic disease when

both are disrupted in an individual. We consider all cases

in DIDA, which includes cases where both variants are

required for disease, and cases in which having the variants

simultaneously modifies disease presentation or severity.

Our approach is based on supervised machine learning

with a random forest classifier trained on diverse func-

tional, network, and evolutionary properties of known di-

genic gene pairs versus realistic sets of non-digenic gene

pairs, including variant pairs from healthy individuals.

We evaluate the accuracy of DiGePred and demonstrate

that it has a low falsepositive rate,which is essential for clin-

ical applications. To aid in rapid screeningofpatients forpo-

tential digenic disease variants, we provide a classification

of the digenic disease potential for all human gene pairs.
Subjects and methods

Digenic gene pairs
We obtained known digenic disease gene pairs from the Digenic

Diseases Database (DIDA; with the latest version as of April

2021, which was updated in July 2017).28 There were 140 unique

gene pairs in DIDA. These pairs served as the ‘‘positive’’ training

data for the machine learning classifier and were termed the ‘‘di-

genic’’ set of gene pairs. DIDA provides information about the

genes mutated together in cases of digenic disease, the variants

in the genes, the number of variants on both alleles, as well as in-

formation concerning the connectivity of the genes forming a

gene pair, such as distance on protein-protein interaction (PPI)

network, whether expressed in same tissue, whether members of

the same biochemical pathway, and whether annotated to have

the same function. The additional list of digenic pairs discussed

in a follow-up paper by the group that produced DIDA31 were

not used for training.

Non-digenic gene pairs
We generated several sets of putative non-digenic gene pairs that

served as the ‘‘negative’’ data in training different classifiers. The

‘‘unaffected’’ non-digenic set was created from genes with variants

in the sequenced exomes or genomes of UDN individuals’ relatives

deemed unaffected by the UDN. Thus, we consider any combina-

tion of genes observed to be mutated simultaneously in any one

‘‘unaffected’’ individual to be non-digenic. Combining gene pairs

from 55 individuals, the unaffected set contains 1.8 million gene

pairs. We considered validation sets both with and without

gene-level overlapwith the training/validation sets. The ‘‘random’’

non-digenic set was created by selection of random pairs from the

list of all human genes. The ‘‘permuted’’ non-digenic set was

created by generation of all possible pairs of two genes from the

DIDA genes, excluding actual DIDA pairs; this resulted in 13,390

permuted gene pairs. We created the ‘‘matched’’ non-digenic

gene pair set from the random gene pairs by selecting gene pairs

such that the distribution of the six network and functional fea-

tures (NFFs) match those of the digenic set. We binned the digenic
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gene pairs by dividing the distribution of features into equal-sized

intervals such that every feature value data interval had an equal

number of gene pairs. We selected random gene pairs for the

matched set such that the distributions of feature values for all

the selected pairs recapitulated the overall distribution for all fea-

tures of the digenic set, simultaneously.
Six network and functional features
Pathway similarity

The pathway annotations for the genes were derived from KEGG35

and Reactome.36 We used the Jaccard similarity metric37 to calcu-

late the proportion of pathway overlap between the two genes.

The Jaccard similarity is measured by the ratio between the inter-

section of two sets and the union of two sets. In this case, we calcu-

lated the pathway similarity by taking the ratio of pathways anno-

tations in common with both genes and pathway annotations

associated with either. If both genes did not have pathway anno-

tation, the similarity value was 0.

Phenotype similarity

The phenotype annotations from the Human Phenotype

Ontology (HPO)38 for the genes were used as features. The pheno-

typic overlap between the two genes was calculated with the Jac-

card similarity metric, similar to as described above. The value

for missing phenotype annotations was 0.

Co-expression

The co-expression data were derived from the COXPRESdb web

server version 7.3.39 The data are in the form of a mutual co-

expression rank, which indicated how likely it was for a pair of

genes to be co-expressed in the same tissue and the same level

compared to other gene pairs. A lower rank indicated high co-

expression. The inverse of the rank was used as the feature, and

if either gene was not found in the co-expression database, the

value used was 0.

PPI distance

The network data were downloaded from the UCSC gene and

pathway interaction browser,40 which in turn was derived from

other sources of data, such as PPI databases,41–44 functional anno-

tation databases,45 and others. The PPI network was based on

experimental data regarding protein interactions. The inverse of

the shortest path between a pair of genes on this network was

used as the PPI distance feature.

Pathway distance

The pathways interaction network was based on interactions be-

tween the various curated biochemical pathways. The inverse of

the shortest path between a pair of genes on this network was

used as the pathway distance feature.

Literature distance

The literature-mined interaction network was made up of interac-

tions derived from reported interactions or predicted associations

in published biomedical literature. The inverse of the shortest path

between a pair of genes on this network was used as the literature

distance feature. For each network (‘‘PPI,’’ ‘‘pathway,’’ and ‘‘litera-

ture’’), a value of 0 indicates the absence of a path between the

gene pair in the network and was thus assigned to pairs with

missing data.
Five evolutionary features
Evolutionary age

We obtained the evolutionary ages of the proteins coded by the

genes by using ProteinHistorian.46 This estimates the ancestral

branch on which the gene first appeared and the age in millions
urnal of Human Genetics 108, 1946–1963, October 7, 2021 1947



of years. The quadratic mean of the values for each gene in a pair

was used as a combined feature.

Gene essentiality

The gene essentiality scores provide a rank of how important and

vital a gene is for normal physiology, viability, and survival. They

were derived from the OGEE web server.47,48 The essentiality

scores are based on knockout (KO) experiments in model organ-

isms and cell-based assays. The quadratic mean of the values for

each gene was used as a combined feature.

Loss-of-function intolerance (pLI)

We added the loss-of-function intolerance (pLI) scores,49 obtained

from the Exome Aggregation Consortium (ExAC). These scores

were based on the difference between actual mutation incidence

and expected mutation frequency. A depletion of mutation inci-

dence, compared to expected frequency, could mean the inability

of the organism to survive if the gene was mutated. The quadratic

mean was used as a combined feature.

Selection pressure (dN/dS)

We usedmeasures of selection pressure in the form of dN/dS scores

for the genes. These were derived from the EVOLA web server.50

dN/dS ratios give a measure of the ratio between the non-synony-

mous mutations and synonymous mutations during evolution.

This ratio tells us whether the gene has been evolving under strong

positive, negative, or neutral selection. The quadratic mean was

used as a combined feature.

Haploinsufficiency

We used the haploinsufficiency scores,51 which were in the form

of predictions of which genes were haploinsufficient on the basis

of observed mutations. The quadratic mean was used as a com-

bined feature.
Gene-focused network and functional features
Several additional gene-level attributes in the network and func-

tional data sources described above were used as features.

Number of pathways

The feature used for the classifier was the quadratic mean of the

number of pathways associated with gene A and the number of

pathways associated with gene B.

Number of phenotypes

Similar to the pathways, the feature used for the classifier was the

quadratic mean of number of phenotypes associated with gene A

and with gene B, individually.

Network neighbors

The numbers of shared network neighbors, defined as the number

of genes directly connected to both gene A and B, were also consid-

ered. For each gene pair, we computed the quadratic mean of the

number of genes in the network directly connected to gene A and

to gene B. These features were defined for all three types of inter-

action networks.

Number co-expressed

The number of genes highly co-expressed with both gene A and

gene B were identified as the top 500 co-expressed genes (out of

possible 20,000) for each. The feature used in the classifier was

the quadratic mean number of genes highly co-expressed with

gene A and gene B, individually.

Encoding gene-level features

Several of the evolutionary, genomic, and network features are at-

tributes of individual genes rather than gene pairs. We combined

these gene-level features into a single feature for each gene pair

by computing their quadratic mean. Results were similar when

we used the arithmetic mean (Figure S5).
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Performance quantification
We computed receiver operating characteristic (ROC) and preci-

sion-recall (PR) curves to evaluate the performance of the classi-

fiers. The ROC curve plots the false positive rate (FPR) on the x

axis and the true positive rate (TPR) on the y axis. We used the

area under each curve (AUC) to summarize performance.
Training and testing the DiGePred random forest

models
We trained several random forest (RF) classifiers to distinguish di-

genic and non-digenic gene pairs. We selected RFs because they

can integrate diverse features, perform well on unbalanced posi-

tive and negative sets, and provide interpretable models. The sci-

kit learn (sklearn) python module was used for all training, evalu-

ation, and prediction.52 Hyper-parameters were selected by nested

cross-validation on 80% of the labeled gene pairs. A stratified

shuffle split was used for 10-fold cross-validation. This method

involved splitting the data into ten equal parts; each part of the

data contained approximately the same ratio of positives and neg-

atives as the other parts. The optimum number of trees was found

to be 500, and the maximum depth was found to be 15. On the

basis of these analyses, we selected the classifier trained with the

unaffected negative pairs and all features as the best model, and

we refer to this as the DiGePred classifier.

The remaining 20% of the combined labeled data was held out

for final performance validation of this best model from the cross-

validation. These pairs had not been previously evaluated by the

classifier. We also considered held-out test sets that had no overlap

with the training/validation sets at the gene level (‘‘no gene over-

lap’’ classifiers). In addition to the held-out positive digenic pairs,

we generated 100 sets of held-out non-digenic pairs for evaluation.

This enabled us to evaluate the best classifier 100-fold by using the

same positive digenic pairs in every iteration but also a unique

non-overlapping set of held-out non-digenic pairs in every

iteration.
Evaluation with additional digenic pairs not in DIDA
The classifier was further evaluatedwith an external setmade up of

gene pairs considered to be digenic that were reported after DIDA

was compiled. The external evaluation set was used in the

previously published variant combination pathogenicity predictor

(VarCoPP/ORVAL [Oligogenic Resource for Variant AnaLysis]).32,34

This set had three unique gene pairs, which did not overlap with

DIDA pairs. These gene pairs, (AHI1, CEP290), (CEP290, CRB1),

and (CEP290, RPE65), were labeled Papadimitriou et al., 2019 vali-

dation set. We included recently discovered novel digenic inheri-

tance of profound non-syndromic hearing impairment caused

by (PCDH15, USH1G).53 In addition, three recently reported cases

of digenic inheritance in immune disorders were used. Amera-

tunga et al., 2017 identified epistatic interactions between TACI

and TCF3 (or TNFRSF13B) resulting in severe primary immunode-

ficiency disorder and systemic lupus erythematosus.54 Hoyos-

Bachiloglu et al., 2017 discussed how human immunodeficiency

was caused by mutations in IFNAR1 and IFNGR2.55 We used

more recent digenic findings such as (LAMA4,MYH7), linked to in-

fantile dilated cardiomyopathy,56 from Abdallah et al., 2019;

(KCNE2, KCNH2), linked to long QT syndrome types 2 and 6,57

from Heida et al., 2019; (CLCNKB, SLC12A3), linked to Gitelman

syndrome,58 from Kong et al., 2019; (CACNA1C, SCN5A), linked

to long QT phenotype,59 from Nieto-Marı́n et al., 2019; (FGFR1,

KLB), linked to insulin resistance60 and diabetes, from Stone
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et al., 2019; (CLCNKA, CLCNKB), linked to Bartter syndrome with

sensorineural deafness,61 from Nozu et al., 2008; and (CLCN7,

TCIRG1), linked to osteoporosis,62 from Yang et al., 2018 to assess

the classifier as well.

We also included gene pairs not characterized as digenic but dis-

playing functional synergy associated with disease or adverse phe-

notypes. We derived the gene pair from the previously reported

UDN study that foundmutations in TRPS1 and FBN1 to be respon-

sible for the patient phenotype, and it was labeled Zastrow et al.,

2017 (UDN).63
Feature importance
To identify the most important features, we used the classifier

feature importance function in sklearn, which uses the Gini impu-

rity approach to quantify the relative feature importance for all

features. Owing to possible biases in the Gini-based approaches

when diverse features are considered,64 we also used a permuta-

tion approach to calculate feature importance. This involved

scrambling the feature values and comparing the error in classifi-

cation between using the actual and permuted values for each in-

dividual feature.65
Prediction score thresholds
We determined a digenic score threshold for the DiGePred classi-

fier for classifying gene pairs as digenic on the basis of the F0.5
metric. This is a modification of the F1 statistic, designed to atten-

uate the effect of false negatives. It is calculated as Fb ¼ ((1 þ b2) x

TP) / ((1 þ b2) x TP þ b2 x FN þ FP), where b ¼ 0.5, TP ¼ true pos-

itives, and FP ¼ false positives. The score that yielded the highest

F0.5 value was 0.496.
Estimating the false positive rate at various score

thresholds
We evaluated the DiGePred classifier with an external set of non-

digenic gene pairs as well. These gene pairs were obtained from 38

unaffected relatives of UDN individuals. The genes were prelimi-

narily selected if the variant in the gene had an ExAC66,67 minor

allele frequency of <1%. A gene was further selected if it received

a pathogenicity score of ‘‘D’’ (‘‘probably damaging’’) from Poly-

Phen2 (Kircher et al., 2014).68 Only genes passing this PolyPhen2

filter were selected to limit the predictions to pairs of genes with

variants that most likely affected molecular function.

Additionally, genes with rare variants were selected on the basis

of a consensus pathogenicity approach if at least two out of Poly-

Phen2, SIFT,69,70 CADD (Kircher et al., 201468; Rentzsch et al.,

201971), and PhyloP72 agreed that the variant(s) in the gene was

pathogenic. A PolyPhen2 selection criterion was similar to above.

A variant was deemed pathogenic by SIFT if the score was%0.05. A

CADD score R 30 was considered pathogenic, while a PhyloP

score of %�10 for a variant deemed it pathogenic. All possible

gene pairs were used as the consensus pathogenic gene pairs for

an individual.

The fraction of gene pairs predicted to be digenic was compared

for individuals with undiagnosed disease versus unaffected mem-

bers of UDN cohorts. The comparison of these fractions was done

for the most confident DiGePred thresholds (F0.5 and higher), and

the Mann-Whitney U (MWU) test p value was calculated for each

and every threshold.
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Comparison with ORVAL
Wesubmitted the list of genepairs for all the unaffected individuals

to the ORVAL (Oligogenic Resource for Variant AnaLysis)32,34

server. We compared the number of pairs predicted to be digenic

by ORVAL, according to its highest confidence threshold, to

the number predicted by our method to be digenic at the F0.5
threshold.Weobtained the list of genes for eachunaffected individ-

ual asmentioned in the previous section.We evaluated the statisti-

cal significance of the number of digenic pairs predicted as false

positives per individual between DiGePred and ORVAL by using a

MWU test.

Furthermore, 20% of all genes with rare variants in the individ-

ual were chosen at random.We generated all possible gene pairs to

constitute the random set of gene pairs for each individual. We

calculated the number of digenic pairs predicted per individual

at different score thresholds. We did this to compare the number

of false positives between ORVAL and DiGePred fairly. Because

ORVAL includes variant effects as a feature, selecting for genes

with variants that were predicted pathogenic by PolyPhen2 or

by a consensus of several predictors of variant effect could bias

against ORVAL, although it reflects common clinical practice.

Therefore, we also compared DiGePred and ORVAL on pairs of

genes selected at random.

For the purpose of comparing ORVAL predictions on individuals

with undiagnosed disease and unaffected members of UDN co-

horts, we further ranked ORVAL predictions by using the ORVAL

classification score as a prediction threshold. According to the au-

thors, pairs with a classification score of >0.74 with a support

score of 100 were scored in the 99% confidence zone. We

compared the fraction of gene pairs predicted to be digenic at vary-

ing ORVAL classification score thresholds, ranging from 0.74 and

higher, for diseased versus unaffected individuals. We calculated

the MWU test p value for the distributions at each and every

threshold.

Gene Ontology (GO) enrichment
The GO enrichment was computed with a web resource, WebGes-

talt (WEB-based GEne SeT AnaLysis Toolkit).73 A list of genes was

prepared for each selected set of predicted digenic pairs on the ba-

sis of highest score, highest average score, or most predicted pairs.

This list of genes was ranked on the basis of the selection criteria,

and the GO enrichment for biological process, cellular compo-

nent, and molecular function categories was performed with the

online tool.
Results

Digenic disease gene pairs have different attributes

than non-digenic disease gene pairs

Our goal in this study is to develop a machine learning

classifier for identifying gene pairs that cause disease

when both are disrupted simultaneously but produce no

or less severe phenotypes when disrupted in isolation. To

this end, we consider all unique known digenic disease

pairs curated by the DIDA and contrast them with several

informative sets of non-digenic disease pairs. Because our

ultimate application is the detection of potential digenic

diseases in patients, most of our results focus on compari-

sons of known digenic gene pairs and gene pairs with var-

iants in ‘‘unaffected’’ parents, siblings, and other relatives
urnal of Human Genetics 108, 1946–1963, October 7, 2021 1949
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Figure 1. Training sets and features used
for machine-leaning-based identification
of digenic disease gene pairs
(A) Digenic gene pairs (positives) were
derived from the Digenic Diseases Database
(DIDA). Unique gene pair combinations
(n¼ 140) were used for training and testing.
Non-digenic gene pairs (negatives) were
derived from unaffected relatives of UDN
individuals. Genes with rare variants in
the same individual were used as an unaf-
fected non-digenic gene pair. We also
considered several other negative training
sets, including random gene pairs,
permuted pairs of genes involved in digenic
pairs, and gene pairs matched to attributes
of digenic pairs (Figure S1).
(B) We considered six network and func-
tional features (NFFs) for training the di-
genic disease classifiers: (1) ‘‘pathway simi-
larity,’’ Jaccard similarity of pathway
annotations from KEGG and Reactome for
both genes; (2) ‘‘phenotype similarity,’’ Jac-
card similarity of phenotype annotations
fromHPO for both genes; (3) ‘‘co-expression
rank,’’ co-expression rank of gene pair
compared to all other gene pairs across mul-
tiple tissues from COXPRESdb; (4–6)
‘‘network distances’’ between the genes on
protein-protein, pathway, and literature-
mined interaction networks from UCSC
gene and pathway interaction browser data-
base. We also trained classifiers considering
additional evolutionary and functional fea-
tures (Figure S2).
of 25 UDN individuals (Figure 1A). However, as we show

below, our results are similar with other strategies for

defining non-digenic disease gene pairs.

Pairs of genes harboring mutations known to cause di-

genic disease have distinct biological properties when

compared with random gene pairs.28 Previous work has

shown that digenic disease pairs have high protein interac-

tion network connectivity and proximity. More than 35%

of known digenic disease pairs directly interact on a PPI

network, and �60% of digenic gene pairs are one gene

away on the interaction network. Similarly, �20% of di-

genic pairs are in the same biochemical pathway, and

�40% are expressed in the same tissues.28

Based on this prior knowledge we devised a list of six

network and functional features (NFFs) to use as attributes

for distinguishing between digenic and non-digenic gene

pairs (Figure 1B): (1) ‘‘pathway similarity,’’ defined as

the Jaccard similarity37 between the genes’ membership
1950 The American Journal of Human Genetics 108, 1946–1963, October 7, 2021
in �1,800 pathways from KEGG35

and Reactome;36,74 (2) ‘‘phenotype

similarity,’’ the Jaccard similarity be-

tween the �6,000 phenotypes from

Human Phenotype Ontology (HPO)38

associated with the genes; (3) ‘‘co-

expression rank,’’ defined as the rank

of the co-expression of the genes across
23 co-expression platforms from 11 species compared to

other gene pairs from COXPRESdb;39 (4) ‘‘PPI distance,’’

the distance on a global PPI network; (5) ‘‘pathway dis-

tance,’’ the distance on an annotated biochemical pathway

network; and (6) ‘‘literature distance,’’ the distance on a

literature-mined interaction network, derived from the

UCSC gene and pathway interaction database.40

We compared the distribution of the NFFs for known di-

genic pairs and for non-digenic gene pairs from unaffected

relatives of UDN individuals. As expected from previous

work, thedistributionof eachNFFwas significantlydifferent

between digenic and non-digenic pairs (Figure S3; p< 10�20

for each, MWU test). This suggests that a machine learning

approach may enable distinguishing digenic from non-di-

genic disease pairs.

To further explore the properties of digenic disease genes

and the ability of a classification approach to recognize

them, we defined three additional sets of non-digenic



Figure 2. Schematic of the protocol for
training and evaluating the DiGePred di-
genic disease pair classifier
Known digenic pairs (positives) and
variant gene pairs from healthy individ-
uals (negatives) were combined at �1:75
ratio. The combined pairs were divided
into training (64%), validation (16%),
and held-out test datasets (20%). The Di-
GePred random forest classifier was
trained and cross-validated with the
training and validation sets. The final per-
formance estimate for the trained Di-
GePred classifier was quantified by the
receiver operator characteristic (ROC)
area under the curve (AUC) and preci-
sion-recall (PR) AUC on the held-out test
set. This set was also used for establishing
suggested thresholds on the continuous
DiGePred score. DiGePred’s potential clin-
ical utility was further demonstrated by
applying it to an additional positive set
of 13 novel digenic pairs from the recent
literature, one novel gene pair in a
resolved UDN individual, and an external
set of non-digenic gene pairs from 38 un-
affected relatives of UDN individuals.
disease gene pairs (Figure S1). First, we created a ‘‘permuted’’

non-digenic set by generating all possible gene pairs from

genes known to be involved in a digenic gene pair and

removing the pairs known to be digenic. Second, we con-

structed a ‘‘random’’ set of non-digenic gene pairs by

randomly selecting gene pairs from all possible human

genes (excluding known digenic pairs). Third, we created a

‘‘matched’’ non-digenic gene pair set that closely matched

the NFF distributions of the digenic gene pairs; however,

we were not able to match the distribution of all NFFs

perfectly given the skewed distribution of the digenic dis-

ease pairs (Figure S3). Nonetheless, the matched set enables

exploration of how well our classification approach can

identify digenic pairs among non-digenic pairs with similar

NFF distributions. To be conservative, we also constructed

non-digenic gene pair sets with no overlap between the in-

dividual genes present in the training and the held-out test

datasets.75 These are subsets of the unaffected and random

sets and will be referred to as ‘‘unaffected no gene overlap’’

and ‘‘random no gene overlap,’’ respectively (Figure S1).

Random forest classifiers accurately identify digenic

pairs via network and functional features

We divided the available gene pairs into training (64%),

validation (16%), and held-out test sets (20%). We trained,

evaluated, and compared different models by using 10-fold

cross-validation within the training and validation sets

(Figure 2). The test set was only analyzed after models
The American Journal of Human Genetic
had been finalized. Comprehensive

studies of genetic interactions have

found that one in approximately 40

gene pairs interact.76 This suggests
that digenic interactions are most likely rare; only a very

small fraction of all possible gene pairs is likely to produce

digenic disease. We trained the random forest machine

learning classifier by using the six NFFs to distinguish

140 digenic disease gene pairs (positives) from �8,400

negative gene pairs. Unless otherwise specified, we focus

in themain text on the ‘‘unaffected no gene overlap’’ nega-

tive set and present others in the supplemental informa-

tion. The large class imbalance (�1:75) reflects our expecta-

tion few digenic gene pairs among all possible pairs to be

evaluated; this exact ratio was selected because of data

availability. We evaluated performance by using ROC and

PR curves.

The random forest classifier distinguished digenic and

non-digenic gene pairs very accurately with the six NFFs.

It achieved an average ROC area under the curve (AUC)

of 0.90 and a PR AUC of 0.698 on average over 10-folds

of cross-validation on the training and validation sets (Fig-

ures 3 and S4). The algorithm retains near perfect precision

at recall above 60% (Figure 3B). Because we are evaluating

multiple classification approaches, the held-out test set

was not considered in this analysis.

Including additional features improves ability to identify

digenic disease genes

The performance of the classifier based on the six NFFs

alone was strong; however, there are many other sources

of biological information beyond the NFFs that could
s 108, 1946–1963, October 7, 2021 1951



A B Figure 3. Random forest classifiers can
accurately distinguish digenic and non-di-
genic gene pairs via different feature sets
(A and B) Performance of classifiers at dis-
tinguishing between known digenic pairs
from DIDA (positives) and gene pairs
from 25 healthy individuals (negatives)
trained via different feature sets as evalu-
ated by receiver operating characteristic
(ROC) curves (A) and precision-recall (PR)
curves (B). Classifiers trained on three
sets of features are compared: (!) six
network and functional features (NFFs)
(dotted line); (2) the six NFFs and evolu-
tionary genomics features; and (3) the six
NFFs, evolutionary genomics features,
and gene-level network and functional fea-
tures. The mean curves across 10-fold
cross-validation on the training and

validation sets are plotted with shaded areas representing the standard deviation. Because this analysis is developing and evaluatingmul-
tiple possible classifiers, we held out the test set for final evaluation (Figure 4).
potentially inform either the nature of the relationship be-

tween genes or the relative likelihood and risk of a gene’s

being mutated and causing disease. We tested whether

including additional features in training the classifier

would increase performance of the classifier.

First, we trained classifiers by using the six NFFs and five

additional evolutionary features that reflect the evolu-

tionary history and constraint on the genes (Figure S2A).

These features were as follows: (1) the evolutionary ages

of the genes, (2) their essentiality, (3) their intolerance to

loss-of-function mutations, (4) the selection pressure

acting on them through mammalian evolution (dN/dS),

and (5) their haploinsufficiency scores. The addition of

evolutionary features, as the quadratic mean of the values

associated with both genes, substantially improved classi-

fier performance: average ROC AUC of 0.938 and PR

AUC of 0.709 (Figures 3 and S4).

Next, we considered additional features derived from

network and functional annotations of the gene pairs

(Figure S2B). These features were designed to add additional

gene-focused (rather than gene-pair-focused) context and

explore the sufficiency of the six NFFs. These features were

as follows: (1) the number of pathways, (2) phenotypes, (3)

networkneighbors, and (4) genes co-expressed for each indi-

vidual gene in a candidate pair. As above, we used the

quadratic mean to combine these gene-level features.

Considering these features also further improved classifier

performance; there was an average ROC AUC of 0.972 and

PR AUC of 0.751 for all features (Figures 3 and S4).

Digenic disease genes can be distinguished from many

non-digenic gene sets

We used the same training and evaluation approach as

described in the previous section for the unaffected no

gene overlap negative set to train random forest classifiers

to distinguish digenic disease gene pairs from each of the

additional negative sets (random, permuted, andmatched)

by using all the network, functional, and evolutionary fea-

tures. In each case, the classifiers performed very well
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(Figure S4). The classifiers trained to distinguish digenic

pairs from random and random no gene overlap pairs per-

formed the best (mean ROC AUC of 0.972 and 0.968 and

PR AUC of 0.696 and 0.741, respectively) with all features

included for training. As expected, given their similar attri-

butes to the digenic pairs, the permuted and matched

negative sets are more challenging for the classifiers, but

they still achieved very strong performance with average

ROC AUCs of 0.964 and 0.977 and PR AUCs of 0.54 and

0.597, respectively.

Feature importance varies for classifiers trained on

different non-digenic sets

We estimated the importance of the features to the classi-

fiers by using the mean decrease in node impurity

approach (Figure S6). For the classifier trained with variant

gene pairs from unaffected relatives, the Jaccard similarity

of phenotypes associated with each gene for a gene pair

was the highest weighted feature (37%). The pathway sim-

ilarity and the mean number of phenotypes for the gene

pair were among the other important features (10% and

7% of the weight, respectively). The feature importance

values were similar for the classifiers trained with random

gene pairs and permuted digenic gene pairs (Figure S6).

The feature importance values were most different for

the matched classifier; it placed significantly lower feature

importance on the NFFs. This was expected because the

differences between the positive and negative training ex-

amples in individual NFFs were minimal for this classifier

by design. Instead, a range of evolutionary and individual

gene-level functional features took on similar levels of

importance (Figure S6). This indicates that information

in gene-level features related to evolution, gene impor-

tance, and relevance to physiology contain useful informa-

tion about the likelihood of gene pairs interacting to pro-

duce digenic disease.

The impurity approach for feature importance calcula-

tion can be biased, especially when the classification task

includes features with both continuous and discrete
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A B Figure 4. Classifiers accurately distin-
guish digenic pairs from non-digenic pairs
on held-out test sets
(A and B) ROC (A) and PR (B) curves for
random forest classifiers trained with all
features on digenic gene pairs and various
negative sets (indicated in the legend)
and evaluated on the appropriate held-
out test sets. These test sets consisted of
DIDA held-out pairs as positives and six
different held-out negative sets: (1) ‘‘unaf-
fected,’’ derived from healthy relatives
of UDN individuals (light blue); (2)
‘‘permuted,’’ derived by generating permu-
tations of known digenic pairs (orange);
(3) ‘‘random,’’ derived by randomly select-
ing pairs of genes (dark green); (4)
‘‘matched,’’ derived bymatching the distri-
bution of network and functional features

observed among the digenic pairs (gray); (5) ‘‘unaffected no gene overlap,’’ derived from healthy relatives of UDN individuals and no
genes in common between the training and test datasets (dark blue); (6) ‘‘random no gene overlap,’’ derived by randomly selecting pairs
of genes with no genes in common between the training and test datasets (light green). The ROC AUCs were>0.97 in all cases, while the
PR AUCs were >0.6 in all cases. In all subsequent analyses, the ‘‘unaffected no gene overlap’’ classifier will be referred to as ‘‘DiGePred.’’
values.64 Therefore, we also used a permutation approach

to calculate the importance for each feature on the basis

of the error in classification after the feature values were

scrambled. Phenotype similarity was still the most impor-

tant feature (Figure S7A), and the feature importance

values calculated on the basis of the impurity and the per-

mutation approach generally agreed (Spearman rho ¼
0.404, Figure S7B).

DiGePred accurately identifies held-out digenic pairs

To obtain an unbiased estimate of the best classifiers’ per-

formance, we evaluated them by using held-out test sets

of digenic and non-digenic pairs. These sets were not

used for training or validating the classifier and main-

tained the 1:75 ratio used during training. The classifiers

trained with gene pairs observed in unaffected relatives

of UDN individuals as negatives most closely reflect the

distribution of genemutations likely to be seen in real clin-

ical applications. Based on the previous results, the best

balance between performance and stringency in selecting

the negatives was achieved for the unaffected no gene

overlap model with all the features used during training.

We focus on this model going forward but report results

for all classifiers.

The ROC AUC for the unaffected no overlap classifier on

the held-out sets was 0.983, while the mean PR AUC was

0.742 (Figure 4). The classifiers trained on the other non-

digenic gene pair sets also performed well on their corre-

sponding held-out sets: the ROC AUCs were better than

0.97 and PR AUCs were better than 0.59 in all cases

(Figure 4).

To establish thresholds for predicting potential digenic

gene pairs on the basis of the output of the unaffected

no gene overlap classifier, we computed thresholds that

maximize the F1 and F0.5 scores. The F1 is maximized at a

digenic score of 0.156, and the F0.5 is maximized at a di-

genic score of 0.496. Because we anticipate that precision
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is more important than recall in most applications, we sug-

gest use of the F0.5-based threshold. At this threshold, the

classifier correctly identified 13 of 28 digenic gene pairs

in the held-out test set and had with a false positive rate

of 0.14% (Figure 4, Dataset S1). We refer to this model as

the digenic predictor (DiGePred).

DiGePred identifies novel digenic pairs from the recent

literature

Although the test set was not seen by the classifier prior to

evaluation, it was still obtained fromDIDA, the source of di-

genic pairs for training and testing. Thus, we further applied

our classifier to 13 digenic pairs obtained from recent litera-

ture not included in DIDA (Table S1). We derived three

digenic pairs [(CEP290, RPE65), (AHI1, CEP290), (CEP290,

CRB1)] from the validation set used by a recently

published digenic classifier.32 The other digenic gene

pairs [(CLCNKA, CLCNKB), (TCF3, TNFRSF13B), (IFNAR1,

IFNGR2), (PCDH15, USH1G), (LAMA4, MYH7), (KCNE2,

KCNH2), (CLCNKB, SLC12A3), (CACNA1C, SCN5A),

(FGFR1,KLB), (CLCN7,TCIRG1)] were derived from recently

reported cases of digenic disease (Abdallah et al., 2019;

Ameratunga et al., 2017; Heida et al., 2019; Hoyos-Bachilo-

glu et al., 2017; Kong et al., 2019; Nieto-Marı́n et al., 2019;

Nozu et al., 2008; Schrauwen et al., 2018; Stone et al., 2019;

Yang et al., 2018, respectively). We note that these pairs

include some similar phenotypes and overlapping genes

and so should not be viewed as 13 independent tests.

DiGePred correctly identified 11 of the 13 novel digenic

pairs at the F0.5 threshold. (Figures 5, S8, and S9). Two of

the gene pairs missed at the F0.5 threshold, IFNAR1 and

IFNGR2 (Hoyos-Bachiloglu et al., 2017) and LAMA4 and

MYH7 (Abdallah et al., 2019) were identified as digenic at

the F1 threshold (expected FPR of 0.5%) (Figures S8 and S9).

We also evaluated a gene pair from a solved UDN case in

which variants in FBN1 and TRPS1 caused independent

autosomal-dominant conditions with some overlapping
urnal of Human Genetics 108, 1946–1963, October 7, 2021 1953



Figure 5. DiGePred accurately identifies novel digenic pairs from the recent literature
Geometric shapes in red indicate the DiGePred scores assigned to 13 novel digenic pairs reported in the recent literature. The dashed
pink and purple lines represent the DiGePred score thresholds that maximize the F1 (0.156) and the F0.5 (0.496) metrics (Figure S8).
Given the importance of precision in clinical applications, we propose the score maximizing the F0.5 metric or higher as a threshold
for calling a gene pair digenic. At this threshold, 11 of the 13 novel digenic pairs are predicted to be digenic with a low expected false
positive rate (%0.14%). All digenic pairs score above the F1 threshold. The DiGePred classifier was trained with all features and the un-
affected no gene overlap set as negatives.
symptoms that produced a unique phenotype in the

affected individual (Zastrow et al., 2017).63 As a result of

the lack of interaction, this pair does not meet the strict

criteria for digenic pairs used here. DiGePred predicted

that this gene pair was not digenic at the F0.5 threshold.

Nonetheless, it was predicted at the F1 threshold

(Figure S8, Dataset S2), suggesting the potential of the clas-

sifier to highlight pairs of functionally related genes.

DiGePred has a low false positive rate in real-world

applications

Individuals often carry hundreds of protein-coding vari-

ants of unknown significance, which results in thousands

of potential digenic disease pairs per individual. Thus,
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when considering the application of classifiers to individ-

uals’ genomes, it is essential to understand and control

the false positive rate. To this end, we evaluated DiGePred

on gene pairs with rare variants predicted to disrupt pro-

tein function in 38 human genomes from unaffected par-

ents and relatives of UDN individuals not used in training

the algorithm. These healthy individuals should not

contain any true digenic disease pairs, so any positive pre-

dictions on gene pairs from these individuals are very

likely to be false positives. The gene pairs from these indi-

viduals were not used in the training, validation, or held-

out test sets.

At the F0.5 threshold, 8% of unaffected individuals had

no predicted candidate digenic pairs and 29% had only
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Figure 6. DiGePred has a low false posi-
tive rate and outperforms a recent di-
genic gene prediction method
The number of digenic pairs identified for
each of 38 healthy relatives of UDN indi-
viduals is plotted at a range of DiGePred
thresholds (x axis) and for the highest con-
fidence predictions (99% threshold) of the
ORVAL/VarCoPP method. The DiGePred
score thresholds that maximize the F1
and F0.5 metrics on the held-out data are
shown in pink and purple, respectively.
Because the individuals considered are
healthy, any predicted digenic disease
pairs are very likely false positives. Di-
GePred predicts significantly fewer digenic
pairs at each threshold than ORVAL
(Mann-Whitney U test, p values above
each bar). At the F0.5 threshold, DiGePred
predicts an average of under four digenic
pairs per healthy individual and none
above the 0.9 threshold, while ORVAL pre-
dicts an average of 830 digenic pairs per
healthy individual at its strictest threshold
(Figure S10). Results were similar for classi-
fiers trained on other negative sets (Figures
S10–S18).
one candidate digenic pair. On average, less than four di-

genic pairs were predicted per individual, and only six had

more than five pairs (Figures 6 and S10). Furthermore, we

emphasize that users can adjust the score threshold to

reflect their tolerance for false positives in different

applications; for example, the fraction of individuals

with no digenic gene pairs predicted was 31%, 66%, and

92% at score thresholds of 0.6, 0.7, and 0.8, respectively

(Figure S10).

In contrast, we applied the ORVAL32,34 method for iden-

tifying digenic disease pairs to variants from these same

individuals. At its highest confidence threshold, ORVAL

predicted that all these healthy individuals have digenic

disease pairs and had an average of 830 highest confidence

digenic pairs per individual. All individuals were predicted

to have >300 digenic pairs, and five (�13%) had more

than a thousand digenic pairs predicted (Figure 6). This is

a significantly larger number of candidate digenic disease

pairs per individual than DiGePred (p ¼ 2.95 3 10�14,

MWU test), and these are very likely to be false positives

given that these are healthy individuals. This difference

in number of false positives was recapitulated for all gene

selection criteria, variant pathogenicity prediction ap-

proaches, and all models of training considered (Figures

S11–S18).

We found that 11.8% of false positives in unaffected in-

dividuals (gene pairs incorrectly predicted as digenic by

DiGePred) had at least one gene as a member of a known

digenic pair in DIDA. Only 3.2% of all gene pairs evalu-

ated by DiGePred had at least one gene overlapping

with known digenic pairs from DIDA. This is an approxi-

mately 4-fold enrichment of such gene pairs among false

positives compared to the genome-wide expectation (p ¼
1.31 3 10�5).
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Prediction of digenic pairs among individuals with

undiagnosed disease

To illustrate the application of DiGePred in patients with

rare undiagnosed genetic disorders, we applied it to (1)

affected individuals from the UDN site at Vanderbilt and

(2) a cohort of 111 individuals with Mayer–Rokitansky–

Küster–Hauser (MRKH) syndrome.

We first considered variants from �50 UDN cases and

identified several candidate digenic pairs based on Di-

GePred score integrated with analyses of variant effect,

variant inheritance, and similarity of the gene’s functions

to the patient phenotype. Because these cases are still be-

ing actively evaluated, we cannot report full details here.

Instead, we describe a representative example. We pre-

dicted a candidate digenic pair of ATXN2 (ataxin 2) and

FUS (fused in sarcoma) for an individual with ALS (amyo-

trophic lateral sclerosis)- and Parkinsonism-like pheno-

types. The variant in ATXN2 was a polyglutamine (polyQ)

repeat expansion variant, and there is evidence in litera-

ture for a functional interaction between these two

genes.77–79

To explore the performance of DiGePred on UDN indi-

viduals more quantitatively, we compared the predictions

on variants from 24 affected individuals with 38 available

unaffected relatives that were not used in the training of

DiGePred. We tested whether the rare disease patients

had a higher median of fraction of high-confidence pre-

dicted digenic pairs compared to related individuals

without rare disease. At all thresholds considered (F0.5 or

higher), DiGePred predicted a greater fraction of gene pairs

with variants to be digenic for individuals with undiag-

nosed disease than for the unaffected individuals. The dif-

ference between the distributions was significant (p ¼
6.74 3 10�12, Kolmogorov–Smirnov test; Figure S19). In
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contrast, the fraction of predicted digenic pairs was similar

for the individuals with undiagnosed disease compared to

unaffected individuals across a range of ORVAL classifica-

tion scores within the 99% confidence zone (p ¼ 0.482;

Figure S20).

Next, we applied DiGePred to variants from a cohort of

111 individuals with MRKH syndrome,80 a developmental

disorder primarily affecting the female reproductive sys-

tem, often characterized by a congenital absence of a uterus

or vagina.81,82 We identified a potential digenic pair be-

tween LAMC1 (laminin subunit gamma 1), an extracellular

matrix (ECM) glycoprotein that is amember of the integrin

pathways and plays a role in cell adhesion and signaling,

and MMP14 (matrix metallopeptidase 14), a protein

involved in breaking down the extracellular matrix during

embryonic development and tissue remodeling. The Di-

GePred prediction was driven by the two proteins’ being

highly co-expressed with one another, directly interacting

along the integrin pathway, being only one protein away

on the global PPInetwork, andhaving�5%phenotype sim-

ilarity. Furthermore, there is evidence in literature of func-

tional interaction between LAMC1 andMMP14 that affects

ECM remodeling via fibronectin deposition in zebrafish.83

Prediction of digenic pairs among all human gene pairs

at various confidence thresholds

To aid in the rapid evaluation of digenic disease potential

for a pair of genes of interest, we trained a new DiGePred

classifier by using all digenic pairs fromDIDA (tomaximize

use of available data) and variant gene pairs from healthy

relatives of UDN individuals. We applied DiGePred to all

possible human gene pairs. A gene pair was deemed a

candidate digenic pair if the digenic score met the F0.5
threshold as described above. As expected, the percentage

of all possible gene pairs that were identified as digenic at

our most confident threshold was very low (54,318 out

of 155.33 million gene pairs, 0.035%). These predictions

and the raw digenic scores are available in Dataset S3.

Overall, 7,970 unique genes are involved in at least one

predicted digenic pair. This illustrates that DiGePred is not

just prioritizing gene pairs that include a gene in a known

digenic pair. In fact, only three of the top 100 genes with

the most predicted digenic pairs occur in a DIDA pair.

These genes are enriched for several essential develop-

mental and molecular GO functional annotations,

including ‘‘maintenance of cell number’’ (7.53 expected,

false discovery rate [FDR] ¼ 0.005), ‘‘chromatin remodel-

ing’’ (7.33, FDR ¼ 0.005), and ‘‘membrane docking’’

(7.03 expected, FDR ¼ 0.004; Table S2). For example,

FGF5, a growth factor important for cell proliferation and

differentiation and tissue development and repair, had

the highest number of predicted digenic pairs above the

F0.5 threshold with 370. ARID1B, which had the 2nd high-

est number of predicted digenic pairs, with 262, encodes a

component of the SWI/SNF chromatin remodeling com-

plex with broad regulatory functions across the genome.

CEP290, a centrosome protein with essential roles in
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centrosome and cilia development in many cell types,

had the 6th most predicted digenic interactions with 232.

The genes with the most predicted digenic pairs were

also enriched for several organ development and cell cycle

processes. The top 100 gene pairs with the highest average

DiGePred scores were enriched for tissue and organ devel-

opment, ciliary function, and electron transfer activity

(Figures S21–S23, Tables S3 and S4).

We found that 19,325 (35%) of predicted digenic gene

pairs had at least one recessive phenotype associated in

OMIM.84–86 In almost a fifth of these cases (3,697; 19%),

at least onephenotypewas in commonorwithhigh seman-

tic similarity87 between the two genes. For most of these

gene pairs (3,601; 97%), the two genes had different MIM

numbers in OMIM. This indicates that the two genes have

not been previously annotated as causing a digenic dis-

ease84 and, thus, suggests that they are novel associations.

Existing knowledge provides plausible mechanisms un-

derlying many of these predicted novel digenic gene pairs.

For example, a digenic pair comprising STIM1 and ORAI1

had the 4th highest score over all human gene pairs. It

has been previously reported that STIM1 and ORAI1 func-

tion together to form Ca2þ release-activated Ca2þ (CRAC)

channels, which are responsible for Ca2þ influx called

store-operated Ca2þ entry (SOCE).88 The proper func-

tioning of these channels is necessary for maintaining

the normal physiology of several cell types, including

T cell receptors and human lymphocytes.89–91 Missense

variants in STIM1 and ORAI1, individually, cause diseases

with a great degree of phenotypic homogeneity.92 Loss-

of-function variants in STIM1 and ORAI1 have also been

known to cause immunodeficiency,93–96 under auto-

somal-recessive conditions, as reported by OMIM. There-

fore, it is possible that single loss of variants in both genes

occurring simultaneously could lead to the autosomal-

recessive immunodeficiency.

Discussion

In this paper, we describe DiGePred, a high-throughput

machine learning approach for identification of gene pairs

with the potential to cause digenic disease. We demon-

strate the accuracy and robustness of our approach in

several realistic scenarios. We were motivated to create Di-

GePred by the challenge of identifying causal variants in

individuals with rare disease that cannot be explained by

a single variant. It is not feasible to experimentally evaluate

all candidate pairs of variants in an individual of interest.

Thus, to facilitate the rapid identification of candidate di-

genic gene pairs in affected individuals, we provide Di-

GePred predictions for all pairs of human genes at several

confidence thresholds (Datasets S4A–S4D).

The DiGePred classifier trained with negatives derived

from unaffected relatives is most likely best suited to the

purpose of identifying digenic pairs in individuals with

rare disease because it reflects the baseline distribution of

gene pairs with variants identified via clinical sequencing
ober 7, 2021



pipelines in individuals without severe disease. Moreover,

classifiers trained with these negative sets performed

well. However, our approach performs well at distinguish-

ing digenic pairs from several additional sets of candidate

non-digenic gene pairs, and the features used by these clas-

sifiers are similar unless the prediction problem is explicitly

engineered to make them different (Figures 4 and S4).

Nonetheless, there is still much to learn about the mech-

anisms underlying digenic diseases. The features priori-

tized by our models support previous work28,31 in that

phenotypic similarity, number of phenotypes, and

involvement in the same molecular pathways are the

most important predictors. They also suggest that these

may be more specific predictors of digenic gene pairs

than similar co-expression profiles or close interaction

network distance. Our results via the use of negatives

that match the network and functional features between

positives and negatives sets indicate that digenic gene pairs

also have differences in their evolutionary attributes.

Our analyses are based on the examples available in

DIDA, but there aremost likelyhundreds or even thousands

of undiscovered digenic diseases. The strong performance

of DiGePred on the test set with no gene overlap with the

training set and DiGePred’s ability to identify new digenic

pairs from the recent literature (Figure 5) suggest that the al-

gorithm will generalize. However, we note that our perfor-

mance estimates may be optimistic; known digenic pairs

are unlikely to be an unbiased sample of the full spectrum

of digenic mechanisms. We anticipate that our algorithms

will further improve as more digenic diseases and their

causal molecular mechanisms are determined.

DiGePred is based on functional, biological network,

and evolutionary features in a random forest model.

Phenotype similarity and other phenotype-related fea-

tures, such as the mean number of phenotypes associated

with each individual gene, were the most important fea-

tures. Given that our understanding of function of most

genes is incomplete, the high reliance on a phenotype-

based features could lead to a high-performing model

that does not generalize when these features are missing.

We retrained and evaluated DiGePred by leaving out either

phenotype similarity or all phenotype-related features.

There was a decrease in performance on the held-out test

set (p < 1.34 3 10�24) (Figure S24); however, the classifiers

maintained substantial accuracy and had ROC AUCs >

0.93 and PR AUCs > 0.585. Thus, although our models

are most likely somewhat biased by existing knowledge,

the strong performance is not only due to overlapping

phenotypic annotations.

Using othermachine learning approaches and integrating

additional features could further improve performance. For

example, we have used GO functional annotation enrich-

ment as a way of categorizing our most confident digenic

predictions, but GO ontology relationships between the

genes would most likely help prioritize potential digenic in-

teractions. Because (PPIs were an indicative feature for Di-

GePred, protein family and domain similarity, derived
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from the Pfam97 database, could be considered as a relevant

feature as well. We used a random forest model as it suited

our ensemble approachbased onmany features ondisparate

scales and limited training data. Alternatively, a support vec-

tor machine (SVM) or linear regression approaches could be

used with feature normalization. As discussed in the next

paragraph, we also believe that approaches that incorporate

genetic variants into the prediction are promising; however,

the small amountof available trainingdataposes challenges.

As more digenic disease pairs are identified, we anticipate

that better predictive models will be developed and that

these models will yield insight into the genes, pathways,

evolutionary histories, and phenotypes associated with di-

genic disease.

Our approach intentionally separates the prediction of

variants’ effects on gene function from the identification

of gene pairs that could cause disease when their functions

are disrupted simultaneously. The focus on gene pairs is re-

flected in our use of gene-level and gene-pair-level systems

biology, biological network, and evolutionary features that

represent genes as a whole. The question of whether a

variant affects gene function has been studied extensively.

There are many methods for interpreting variants of un-

known significance,68,71,98–102 but there is low concor-

dance between them.103,104 The decoupling of these tasks

enables users to apply the approaches they believe to be

most appropriate to identify gene pairs of interest before

screening for digenic disease potential. For example, in

our collaboration with the UDN, this includes application

of computational variant effect predictors, study of inher-

itance patterns, and clinical expertise. Our classifiers

perform similarly well whether trained against gene pairs

that have predicted disruptive variants or on all variant

pairs from individuals (Figures S10–S18), suggesting that

they are not simply identifying pairs containing mono-

genic disease genes. In the future, it may be beneficial to

incorporate variant-level and gene-level information into

a single algorithm, in particular in cases where there is

structural information about the proteins of interest.

Indeed, we have had success incorporating 3D modeling

of variants and their interactions with the UDN. However,

as we describe in the next paragraph, improper incorpora-

tion of variant information has potential to cause high

false positive rates.

We compared DiGePred to the recently published

ORVAL/VarCoPP digenic disease prediction server. This

method was also developed with DIDA as positive training

data. Because of the challenge of running the web server

on a large scale, we were unable to evaluate its performance

in our training, validation, test framework. Thus, we

applied it to variant gene pairs from the 24 UDN individ-

uals and their 38 unaffected relatives not used in the

training or initial evaluation of DiGePred. At its strictest

(99%) prediction threshold, we found an average of 855

predicted digenic disease pairs per individual without dis-

ease. This false positive rate is too high for clinical use. In

contrast, DiGePred predicts two or fewer digenic pairs for
urnal of Human Genetics 108, 1946–1963, October 7, 2021 1957



47% of these individuals and an average of under four di-

genic pairs per individual overall. We also observed that

ORVAL predicted a similar fraction of digenic pairs in the

unaffected and affected groups at increasingly strict classi-

fication score thresholds (Figure S20). Our analysis of the

ORVAL method suggests that if one of the genes in a pair

carries a variant that is predicted to be pathogenic by ORV-

AL’s variant effect prediction component, then the gene

pair is very likely to be predicted to be digenic. This sug-

gests that strong variant-level effects may obscure signals

specific to digenic disease.

Going forward,wewill continue to refineour approach in

collaboration with the UDN and other rare disease cohorts.

The approach used to design DiGePred could be expanded

to consider oligogenic combinations of greater than two

genes. Trigenic and oligogenic cases are beginning to be

identified,105,106 and previouswork has identified exclusive

gene hubs that cause disease in combination.107,108 In fact,

many previously considered monogenic diseases are now

being classified as oligogenic or multigenic with a range of

phenotypes depending upon which genes and how many

carry variants.109,110We also believe that there is the poten-

tial to integrate information from large-scale screens of ge-

netic and synthetic lethal interactions in human cell lines

and model organisms.111–116

In summary, we have developed DiGePred, a method for

identifying gene pairs with digenic disease potential, and

generated predictions for all pairs of human genes. Our

use of this tool on rare-disease-affected individuals illus-

trates its potential to provide insight in real-world settings,

and we anticipate that it will have broad utility in clinical

genome interpretation.
Data and code availability

The data and code we used to train and evaluate DiGePred and

other models considered are available at https://github.com/

CapraLab/DiGePred. The trained DiGePred models are also avail-

able in the repository. In addition, digenic pairs from recent liter-

ature are provided as Dataset S2. The gene pairs predicted to be

digenic above our most confident F0.5 threshold are listed in Data-

set S3, and the predictions using all models of DiGePred on all hu-

man gene pairs are in Datasets S4A–S4D. Awebsite that enables the

user to access all DiGePred predictions is available at http://www.

meilerlab.org/index.php/servers/show?s_id¼28.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.08.010.
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McMurry, J., Aymé, S., Baynam, G., Bello, S.M., Boerkoel,

C.F., Boycott, K.M., et al. (2017). The Human Phenotype

Ontology in 2017. Nucleic Acids Res. 45 (D1), D865–D876.
1960 The American Journal of Human Genetics 108, 1946–1963, Oct
39. Okamura, Y., Aoki, Y., Obayashi, T., Tadaka, S., Ito, S., Narise,

T., and Kinoshita, K. (2015). COXPRESdb in 2015: coexpres-

sion database for animal species by DNA-microarray and

RNAseq-based expression data with multiple quality assess-

ment systems. Nucleic Acids Res. 43, D82–D86.

40. Poon, H., Quirk, C., DeZiel, C., and Heckerman, D. (2014).

Literome: PubMed-scale genomic knowledge base in the

cloud. Bioinformatics 30, 2840–2842.

41. Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kal-

tenbach, I., Fobo, G., Frishman, G., Montrone, C., and

Mewes, H.-W. (2010). CORUM: the comprehensive resource

of mammalian protein complexes–2009. Nucleic Acids Res.

38, D497–D501.

42. Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., Frishman, G.,

Montrone, C., Stransky, M., Waegele, B., Schmidt, T., Dou-
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for Mayer-Rokitansky-Küster-Hauser Syndrome. Hum. Genet.

140, 667–680.

81. Morcel, K., Camborieux, L., Guerrier, D.; and Programme de
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