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Abstract 
Quantification of the tolerance of protein-coding sites to genetic variation within human 
populations has become a cornerstone of the prediction of the function of genomic variants. We 
hypothesize that the constraint on missense variation at individual amino acid sites is largely 
shaped by direct 3D interactions with neighboring sites. To quantify the constraint on protein-
coding genetic variation in 3D spatial neighborhoods, we introduce a new framework called 
COntact Set MISsense tolerance (or COSMIS) for estimating constraint. Leveraging recent 
advances in computational structure prediction, large-scale sequencing data from gnomAD, and 
a mutation-spectrum-aware statistical model, we comprehensively map the landscape of 3D 
spatial constraint on 6.1 amino acid sites covering >80% (16,533) of human proteins. We show 
that the human proteome is broadly under 3D spatial constraint and that the level of spatial 
constraint is strongly associated with disease relevance both at the individual site level and the 
protein level. We demonstrate that COSMIS performs significantly better at a range of variant 
interpretation tasks than other population-based constraint metrics while also providing 
biophysical insight into the potential functional roles of constrained sites. We make our constraint 
maps freely available and anticipate that the structural landscape of constrained sites identified 
by COSMIS will facilitate interpretation of protein-coding variation in human evolution and 
prioritization of sites for mechanistic or functional investigation. 

 

Introduction 
The human proteome harbors millions of missense variants that could alter protein structure and 
function and contribute to disease risk (Karczewski et al., 2020). Strong evolutionary constraint is 
a hallmark of sites critical to a protein’s structure or function. A common approach to identifying 
constrained sites in human proteins has been to align the human protein sequence to those from 
other species and locate amino acid residues that are conserved across multiple species (Ng and 
Henikoff, 2001; Pupko et al., 2002; Capra and Singh, 2007; Cooper and Shendure, 2011). When 
combined with protein structures, this approach can facilitate generation of testable hypotheses 
about the biophysical mechanisms underlying the evolutionary constraint (Landgraf et al., 2001; 
Halabi et al., 2009; McLaughlin et al., 2012; Huang and Golding, 2015). Such interspecific 
comparisons of sequences are powerful in detecting sequence conservation over long 
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evolutionary timescales. Similarly, patterns of intraspecific coding variation, especially low-
frequency variants, carry important information about the functional importance of proteins and 
variants in human development and disease (Karczewski et al., 2020).  

Leveraging ever growing human genetic variation data resources (Tennessen et al., 2012; 
Auton et al., 2015; Lek et al., 2016; Karczewski et al., 2020), several methods have been 
developed to estimate gene- or region-specific constraint based on tolerance to missense or loss-
of-function variants in humans (Petrovski et al., 2013; Samocha et al., 2014; Gussow et al., 2016; 
Lek et al., 2016; Fadista et al., 2017; Havrilla et al., 2019; Hayeck et al., 2019; Karczewski et al., 
2020). These gene-level and region-level measures of constraint have been effective in identifying 
Mendelian disease genes, genes under strong negative selection, and genes involved in severe 
neurodevelopmental disorders. However, some protein sites are critical for maintaining the 
integrity of protein structure or function, while others can be replaced with no or only minor impact 
on protein structure or function (Worth et al., 2009). Metrics that yield a single score for an entire 
gene or a subregion do not capture the site-level variability in constraint that is essential for 
interpreting the effects of specific VUS. To this end, the site-specific missense tolerance ratio 
(MTR), which compares the observed fraction of missense variation to the expectation under a 
null model within a sliding window of 31 residues, was developed and shown to improve variant 
interpretation in epilepsy genes (Traynelis et al., 2017).  

Recent analysis of the spatial distribution of missense variants in proteins showed that 
population-level human standing variation can be analyzed in the context of 3D protein structures 
to identify specific regions and domains relevant to protein function and disease (Kamburov et al., 
2015; Gao et al., 2017; Sivley et al., 2018; Hicks et al., 2019; Perszyk et al., 2021; Silk et al., 
2021). For example, the analyses of tumor-derived somatic mutations within the context of protein 
structure indicate that variants tend to form spatial clusters and that these clusters often overlap 
functional domains in oncoproteins and tumor suppressors (Stehr et al., 2011; Kamburov et al., 
2015; Meyer et al., 2016; Niu et al., 2016; Tokheim et al., 2016). Analysis of 3D spatial patterns 
of both human germline and somatic variation also highlighted significant differences in the spatial 
constraint on different classes of mutations in protein structure (Sivley et al., 2018). Recently, 
amino acid residue sites that are intolerant to missense variation have been characterized by 
incorporating protein structures and human genetic variation from large sequencing cohorts 
(Hicks et al., 2019; Liang et al., 2021; Perszyk et al., 2021; Silk et al., 2021). These studies 
suggest that missense variant analysis at the 3D level can identify functional sites and aid in 
variant interpretation.  However, these previous analyses are limited by the availability of high-
quality protein 3D structures and generally covered less than half of the proteins in the human 
reference proteome. In addition, while it is well-recognized that the mutability of individual amino 
acid sites is influenced by nucleotide sequence context (Neale et al., 2012; Samocha et al., 2014; 
Lek et al., 2016; Karczewski et al., 2020) and that inter-residue spatial interactions are essential 
to maintaining structural and functional integrity of proteins (Worth et al., 2009), the consideration 
of the mutation spectrum at the resolution of native 3D interactions remains largely unexplored.  

We hypothesize that connected functional sets of 3D neighboring amino acid sites, a 
“contact set”, collectively shape the level of constraint on each site (e.g., as quantified by the 
depletion of missense variation compared to the amount expected under neutral evolution). We 
introduce the COntact Set MISsense (COSMIS) tolerance framework, to quantify the level of 
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observed vs. expected missense variation in the local 3D structural context of index sites while 
correcting for nucleotide sequence context-dependent mutability of amino acid sites. We applied 
the framework to analyze the 3D spatial distribution patterns of 4.1 million unique missense 
variants at 6.1 million amino acid sites in their 3D structural context. We integrated high-quality 
protein 3D structures from three large sources, i.e., the Protein Data Bank (PDB) (Rose et al., 
2017), the SWISS-MODEL repository (Waterhouse et al., 2018), and the recently released, 
comprehensive database of protein 3D structures predicted by the AlphaFold2 algorithm (Jumper 
et al., 2021; Tunyasuvunakool et al., 2021). Collectively, our framework covers 16,533 (80.3%) of 
all proteins in the human reference proteome. We show that our framework captures broad 
missense variant intolerance at the 3D spatial level across the human proteome. We demonstrate 
the utility of COSMIS in variant interpretation and in revealing biophysical insights into the 
pathogenic mechanisms of disease-causing variants. We further demonstrate the flexibility of the 
framework to work with custom-built homology models of potassium channels and with proteins 
in their oligomeric states. We propose that our COSMIS framework will have broad applicability 
in answering diverse questions about variant effect and to discover new genotype-phenotype 
relationships. 

Results 
The COSMIS framework maps spatial constraint on proteins in high resolution  

We developed the COSMIS framework to quantify the intra-species 3D spatial constraint at each 
site in a protein structure. Our framework estimates the constraint on a site of interest (index site) 
as the depletion of missense variants in its contact set compared to the number expected if it 
were evolving neutrally. We quantify this as the deviation of observed count of missense variants 
(𝑚!) from the mean (𝑚") of the expected count distribution (accounting for transcript and codon 
missense mutability) and divided by the standard deviation of the expected distribution (𝑚#) (Fig. 
1 and Methods). We designate this Z score as the COSMIS score and assign it to the index site. 
Thus, a lower score indicates a greater depletion of missense variants in the spatial neighborhood 
and hence lower missense variation tolerance. We also compute an empirical p-value for each 
COSMIS score based on 10,000 null simulations and the resulting expected count distribution 
(Methods). 

3D structural context differs from 1D sequence context  

COSMIS scores are based on the 3D interaction context of protein-coding sites. We quantify this 
context using contact sets, defined as the set of amino acid residues that are in contact with the 
residue located at the index site (Fig. 2a). A pair of residues are considered to be in contact when 
the distance between their Cb atoms (or Ca atoms in the case of glycines) is less than 8 Å, a 
threshold commonly used to define residue contact (Shrestha et al., 2019). To compute contact 
sets, we collected high-quality protein 3D structures (Methods and Supplementary Fig. 1) that 
collectively cover 80.3% of all proteins in the human reference proteome (UP000005640, UniProt 
release 2021_03) from the Protein Data Bank (PDB) (Rose et al., 2017), SWISS-MODEL 
repository (Waterhouse et al., 2018), or the AlphaFold database of highly accurate predicted 
structures (AF2) (Tunyasuvunakool et al., 2021) (Fig. 2b) (Supplementary Table 1). Our 
framework also has high residue-level coverage. Structures from PDB, SWISS-MODEL, and AF2 
have a median residue-level coverage of 78.0%, 70.9%, and 76.7%, respectively (Supplementary 
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Fig. 1). Collectively, we computed contact sets for each of 6.1 million unique index sites in the 
human reference proteome (Fig. 2b). For simplicity, we report results for experimental structures 
and computational models together, since patterns were similar when we analyzed them 
separately (Supplementary Fig. 2, Supplementary Fig. 3, and Supplementary Fig. 4).  

Conceptually, a contact set captures residues that are close in 3D space, even when they 
are far apart in sequence. Our analysis shows that contact sets include critical “long-range” 
(defined here as > 15 residues apart along 1D sequence) residue-residue interactions that would 
be missed by 1D sequence-based metrics that only consider a window around the index site. For 
example, for 17.9% of all 6.1 million amino acid sites, at least 50% of the 3D contacts they make 
are long-range, and 66.3% of all sites make at least 10% long-range 3D contacts (Fig. 2c). On 
the other hand, windows based on sequence context alone contain many sites that are not in 3D 
contact with the index site. For example, all of the 6.1 million sites in this study have at least 50% 
of their 30 1D sequence neighbors (15 sites on each side) not in 3D contact, and nearly half 
(47.5%) of all sites have least 80% of sequence neighbors not in 3D contact (Fig. 2d). Thus, long-
range 3D contacts are common, as are sites that are nearby in sequence but distant in 3D. 
(Additional statistics about long-range 3D contacts are available in Supplementary Fig. 3.) 
Residues in 3D contact are likely to be essential for the structural stability and functional integrity 
of the residue at the index site; thus, 3D structure-based residue contact sets give a more 
sensitive representation of the structural and function context of coding sites than sequence-
based windows. 

COSMIS score captures constraint at both protein and site levels 

Consistent with our expectation and previous observations at the gene level, our framework 
identifies broad constraint on missense variants at the protein level and little constraint on 
synonymous variants (Lek et al., 2016; Karczewski et al., 2020). We computed the deviation from 
the expected count (observed - expected) at the protein level for both synonymous and missense 
variants across the entire dataset. Supporting our approach for estimating the expected variant 
count distributions (Methods), the deviation between the observed and expected synonymous 
variant count is low and centered near zero (Fig. 3a; median 1.9, standard deviation 39.4). In 
contrast, the difference between observed and expected is significantly shifted toward negative 
values for missense variants (Fig. 3a; median -29.1, standard deviation 104.8, 𝑝 < 2.2 × 10$%&', 
two-sided Mann-Whitney U test).  

We next computed COSMIS scores for the 6.1 million unique amino acid sites across 
16,533 proteins in the human reference proteome with sufficient data (Fig. 3b). As expected, the 
distribution of scores spans a wide range from negative (constrained) to positive (unconstrained) 
values, with a significant shift toward constraint (median -0.47, standard deviation 1.2). Proteins 
with experimentally determined structures in the PDB have a significantly lower median COSMIS 
score than those currently only have computationally predicted structures in SWISS-MODEL and 
AF2 databases (median -0.62 vs. -0.42 and 0.44, respectively, 𝑝 < 2.2 × 10$%&', two-sided Mann-
Whitney U test) (Supplementary Fig. 4), suggesting that proteins with greater functional 
importance have historically been selected for structural characterization. In contrast, a similarly 
constructed score based on synonymous variants (i.e., contact set synonymous tolerance score) 
is centered at 0, regardless of the sources of protein 3D structures (Supplementary Fig. 4), 
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consistent with overall results and the hypothesis that synonymous variants are not subject to 3D 
spatial constraint in protein structures. 

We consider sites with a COSMIS score for which the empirical p-value obtained from 
simulation is <0.01 as high-confidence (this is approximately equivalent to COSMIS score < -
2.33). Overall, we find 313,204 sites (5.1%) with high-confidence constraint scores from 10,955 
proteins (66.3%), with an average of 28.6 high-confidence constrained sites per protein (Fig. 3c, 
Supplementary Table 2). Overall, these findings suggest that the COSMIS score captures the 
depletion of missense variants in 3D structure-based contact sets resulting from varying functional 
constraint over protein space. 

COSMIS refines gene-level constraint estimates 

With the growth of large human genetic variation datasets, methods have been developed to 
quantify constraint on individual sites, sequence windows, and genes. Given the connection 
between constraint and function, constraint scores are critical components of many gene and 
variant interpretation tasks. For example, gene-level metrics, like pLI (Lek et al., 2016), have been 
extensively used to prioritize genes in which variants are likely to contribute disease risk. However, 
gene-level metrics are incapable of highlighting the amino acid sites within each gene that are 
under constraint. pLI accurately identifies gene-level constraint, but frequently classifies genes 
that harbor known disease associated mutations as LoF tolerant (Ziegler et al., 2019). This is not 
surprising, but it illustrates a weakness of gene- and region-level metrics. Site- and window-based 
intraspecies constraint metrics provide a higher resolution view, but as demonstrated above, 
sequence context is often very different from 3D structural interaction context. Since COSMIS 
quantifies constraint at the contact set level for each amino acid site, we hypothesized that it 
would provide a higher-resolution view of the clinical importance of protein regions, in addition to 
capturing broad constraint at the protein level.  

To explore this hypothesis, we computed the distribution of per-protein COSMIS scores 
for 16,260 proteins stratified into the three pLI classes (Intolerant (n=2,566), Unsure (n=2,900), 
Tolerant (n=10,794)). (We were not able to obtain the pLI scores for 273 proteins with COSMIS 
scores.) As expected, on average LoF intolerant genes (pLI ≥ 0.9) have significantly lower 
COSMIS scores than LoF tolerant genes (pLI ≤ 0.1) (-1.1 vs. -0.12, 𝑝 < 2.2 × 10$%&', two-sided 
Mann-Whitney U test, Fig. 4a), indicating that sites in LoF intolerant genes are on average more 
constrained than LoF tolerant genes. Genes that have medium pLI scores (0.1 < pLI < 0.9) also 
have medium COSMIS score on average (-0.80).  

While LoF tolerant genes have less evidence of spatial constraint overall, we found that 
1888 (40.4%) LoF tolerant genes have at least one high confidence constrained site (COSMIS 
score < -2.33), with 13.6 on average. For example, the ubiquitin-like modifier-activating enzyme 
5 (UBA5) is considered LoF tolerant (pLI score of 2.5 × 10$(). However, our analysis indicates 
that UBA5 has many constrained sites in interfaces of UBA5 dimerization, UBA5-UFM1 binding, 
and UBA5-ATP interaction (Fig. 4b and 4c). Specifically, of the 30 (10%) most constrained sites 
in UBA5, 13 sites are located at the UBA5 dimerization interface, four sites interact with ATP, and 
another three are involved in UFM1 binding (Fig. 4c). This is consistent with UBA5’s involvement 
in severe epileptic encephalopathy (Colin et al., 2016). Indeed, the three constrained sites with 
the strongest constraint according to COSMIS (amino acid residues 54, 57, and 58) include 
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p.Met57Val, which was found in a patient cohort to drastically reduce UBA5’s catalytic activity 
(Colin et al., 2016). Thus, COSMIS scores of UBA5 identify amino acid sites relevant to UBA5’s 
functions and known disease associations. This illustrates how considering constraint in spatial 
neighborhoods can identify genes predicted to be LoF tolerant (low pLI) that are clinically 
important and suggests that COSMIS can guide further investigation before discarding genes 
from clinical consideration. 

COSMIS highlights pathogenic variants and essential proteins 

To quantify the ability of COSMIS to contribute to identification of disease-associated protein 
variants, we compared the COSMIS scores for a total of 19,596 benign and 17,858 pathogenic 
missense variants with unambiguous annotations of clinical significance in ClinVar (Methods, 
Supplementary Table 3). Benign and pathogenic variants have significantly different COSMIS 
score distributions (median 0.0 vs. -1.1, respectively; 𝑝 < 2.2 × 10$%&', two-sided Mann-Whitney 
U test; Fig. 5a). The significant negative shift for pathogenic variants suggests strong constraint 
in their spatial neighborhoods, while the average neutral COSMIS score of benign variants 
suggests less constraint on missense variants in their contact sets. Across the COSMIS score 
range, the magnitude of the score correlates with enrichment for pathogenic over benign variants. 
High-confidence constrained sites are 13.5-fold enriched for pathogenic variants. However, only 
1,706 out of the 10,955 proteins that have at least one high-confidence site have unambiguously 
annotated pathogenic variants in ClinVar (Supplementary Table 4), suggesting that many 
pathogenic variants are yet to be uncovered. Moving down the constraint spectrum, the top 10% 
most constrained COSMIS sites (equivalent to COSMIS score < -1.85) are 10.6-fold enriched for 
pathogenic variants, and the bottom 10% are 3.3-fold depleted (Fig. 5b). Our analysis suggests 
that constraint on missense variation in a site’s 3D interaction context (as quantified by COSMIS) 
is strongly correlated with variant pathogenicity. 

To evaluate the relationship between spatial constraint as quantified by COSMIS and 
function and disease associations at the protein level, we compared the COSMIS score 
distributions of amino acid sites in six groups of genes expected to be under various levels of 
constraint (and the dataset as a whole). In general, genes with essential functions and disease 
associations have lower COSMIS scores than genes without (Fig. 5c) and as the essentiality of a 
gene increases, amino acid sites in the gene have more negative COSMIS scores on average. 
Haploinsufficient genes (a single-copy of the functional allele is insufficient to produce the 
expected phenotype) (Rehm et al., 2015), genes essential in cell culture, and genes associated 
with dominant diseases have the lowest COSMIS distributions among all evaluated gene 
categories. In contrast, constrained sites are much less frequently found in nonessential genes. 
Not surprisingly, olfactory receptors (Mainland et al., 2015) have the least spatial constraint of any 
gene set considered. The abundance of high-confidence constrained sites in each gene follows 
the same general trend (Supplementary Fig. 5). Our analysis identifies 72 proteins with more than 
50% high-confidence constrained sites (Supplementary Table 5). These proteins are likely to be 
under extreme purifying selection; in fact, 10 of these proteins are encoded by genes that have 
already been classified as haploinsufficient (Rehm et al., 2015), essential (Hart et al., 2017), or 
associated with diseases that follow dominant inheritance (Blekhman et al., 2008; Berg et al., 
2013). Overall, our analysis indicates that the COSMIS score strongly captures functional 
constraint and is predictive of variant pathogenicity. 
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COSMIS complements existing quantifications of intra- and inter-species constraint 

To assess the relationship between COSMIS and other intra- and interspecies constraint metrics, 
we first compared COSMIS to four commonly used intraspecies constraint metrics that do not 
consider structural context (MTR, RVIS, pLI, and Missense_Z). We compared these other metrics 
to COSMIS in their ability to identify pathogenic variants using a total of 8,062 benign and 7,256 
pathogenic missense variants from ClinVar for which all scores could be computed 
(Supplementary Table 6). COSMIS achieved a significantly higher area under than receiver 
operating characteristic curve (AUROC) than the other intraspecies constraint metrics (e.g., 0.733 
vs. 0.653 for COSMIS vs. MTR, 𝑝 = 1.0 × 10$)*, two-sided DeLong’s test, Fig. 6a). This suggests 
that 3D neighboring residues contribute critical information about the functional importance of 
index sites. We additionally compared COSMIS to a recently developed version of MTR that 
considers missense variants in 3D neighborhoods (MTR3D), but does not account for sequence 
context-dependent mutability (Perszyk et al., 2021; Silk et al., 2021). COSMIS also performs 
significantly better than MTR3D (i.e., 0.733 vs. 0.665, 𝑝 = 2.5 × 10$*&, two-sided DeLong’s test, 
Fig. 6a), suggesting that accounting for the variability of mutability is essential to estimate 
constraint.  

We then compiled a subset of 3.6 million amino acid sites for which the five commonly 
used intraspecies constraint metrics (MTR, MTR3D, RVIS, pLI, and Missense_Z) could also be 
computed. To summarize the relationships between these constraint scores, we computed their 
pairwise Spearman correlations across sites (Fig. 6b). As expected, pLI and Missense_Z have 
the highest Spearman’s ρ (0.63), given that they both quantify gene-level constraint and were 
derived with similar approaches (Lek et al., 2016). Similarly, MTR and MTR3D are well correlated 
(Spearman’s ρ 0.53). The COSMIS score has a comparable level of correlation with both MTR 
and MTR3D (0.41 and 0.39). The intermediate correlations suggest that the metrics capture 
constraint at different scales, as expected. 

To illustrate the differences between the intraspecies constraint scores and interspecies 
phylogenetic conservation metrics, we additionally computed the correlations for four common 
interspecies phylogenetic conservation metrics (GERP++, phyloP, phastCons, ConSurf) 
(Supplementary Table 6). Phylogenetic conservation metrics are generally more correlated with 
each other than with any of the intraspecies constraint scores (Fig. 6b). For example, the lowest 
Spearman’s ρ between the four phylogenetic conservation metrics is 0.47 (GERP++ vs. phyloP), 
higher than the highest Spearman’s ρ between a phylogenetic metric and an intraspecies 
constraint score (i.e., 0.38, ConSurf vs. RVIS and Missense_Z). This is consistent with previous 
finding that intraspecies constraint metrics are only modestly correlated with phylogenetic 
conservation (Gussow et al., 2016; Havrilla et al., 2019). 

Given this, we hypothesized that integrating interspecies scores with COSMIS could 
provide additional information for pathogenicity prediction. To test this hypothesis, we combined 
COSMIS with ConSurf (the best performing interspecies metric on our dataset, Supplementary 
Fig. 6) using a logistic regression model and evaluated the resulting performances with five-fold 
cross validation (Methods). Our evaluation shows that integrating COSMIS and ConSurf 
outperformed the AUROC of both ConSurf and COSMIS alone (0.860 vs. 0.847 and 0.733, 𝑝 =
0.002 and 𝑝 = 6.3 × 10$+(* , respectively, two-sided DeLong’s test, Fig. 6c). In particular, the 
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improvement from adding COSMIS to ConSurf over ConSurf alone is mainly due to better 
performance in the high-confidence region (Fig. 6d). However, we note that ConSurf alone 
outperforms COSMIS alone (0.847 vs. 0.733) (Fig. 6c). Combining all 10 scores and relative 
solvent accessibility in a regression model resulted in additional AUROC improvement (0.884 vs. 
0.860, 𝑝 = 6.0 × 10$+&, two-sided DeLong’s test, Figure 6c). Our results suggest that COSMIS 
score contributes additional information to phylogenetic conservation for pathogenicity prediction 
and that adding intraspecies constraint can improve the performance of even the best 
phylogenetic conservation scores. 

COSMIS improves the interpretation of de novo variants in neurodevelopmental disorders 

De novo mutations are often clinically relevant and are more likely to be pathogenic than inherited 
variation (Eyre-Walker and Keightley, 2007); however, they are difficult to interpret. De novo 
variants play a prominent role in rare and common forms of neurodevelopmental disorders 
(Veltman and Brunner, 2012), and de novo variants in neurodevelopmental disease cohorts have 
been used previously to benchmark the utility of constraint metrics for variant interpretation 
(Samocha et al., 2014). To test if considering spatial constraint could contribute to the 
interpretation of de novo variants, we compared the COSMIS distributions for 2,271 de novo 
missense variants from neurodevelopmental disorder probands (case variants) versus 541 de 
novo missense variants from unaffected siblings of autism spectrum disorder probands (Samocha 
et al., 2017) for which COSMIS scores can be computed (Supplementary Table 7). Control 
variants had a median COSMIS score significantly higher than the median COSMIS score of case 
variants (-0.39 vs. -0.83, 𝑝 = 3.0 × 10$+%, two-sided Mann-Whitney U test) (Fig. 7a).  

For context, we compared the ability of COSMIS to enrich for case variants with the other 
inter- and intraspecies metrics considered previously. We did this analysis using 1,506 case and 
306 control variants for which all 10 scores are available (Supplementary Table 8). For COSMIS, 
24.2% case and 8.2% control variants fall within the 10th percentile of most constrained sites (i.e., 
COSMIS score < -1.85), corresponding to an odds ratio (OR) of 3.6 (𝑝 = 2.6 × 10$++, two-sided 
Fisher’s exact test) (Fig. 7b). Both MTR and pLI achieved the next highest OR of 2.6 at the 10th 
percentile of most constrained sites, while being lower than COSMIS. Except for MTR3D, which 
has an OR of 2.1, the ORs of all the rest metrics are below 2 (Fig. 7b). At other thresholds (5th 
and 20th percentiles), COSMIS also has the highest ORs (Supplementary Fig. 9). We do not 
expect all de novo variants in cases to be causal; thus, the modest performance of all metrics is 
not surprising. Our finding is also consistent with previous observation that distinguishing case 
from control de novo mutations is challenging (Havrilla et al., 2019; Pejaver et al., 2020). Overall, 
we expect COSMIS to be a valuable tool to complement existing approaches for prioritizing de 
novo mutations. 

Applying COSMIS to custom-built oligomeric potassium channel structures 

To demonstrate the flexibility of our framework to work with custom-built protein 3D structures 
and to investigate whether COSMIS score could capture constraint imposed by protein-protein 
oligomerization (Caffrey et al., 2004; Mintseris and Weng, 2005; Li et al., 2019), we compiled a 
set of 41 potassium ion channel (KCN) genes (Supplementary Table 9) for which variants have 
been annotated in ClinVar. KCN genes encode proteins that function in homo-oligomeric states 
(Yu and Catterall, 2004), so we expected interface sites to be under stronger constraint than non-
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interface sites.  We obtained structures for these KCN proteins in their homo-oligomeric states 
either from the PDB or through homology modeling using the SWISS-MODEL interactive 
workspace (Waterhouse et al., 2018). Collectively, we structure-mapped and computed two sets 
of COSMIS scores, based on monomers and oligomers, respectively, for 4,762 interface and 
14,331 non-interface sites in these potassium channels. As expected, we found that on average 
interface sites are significantly more constrained than non-interface sites (median COSMIS score 
-1.3 vs. -1.1, 𝑝 = 1.3 × 10$+), two-sided Mann-Whitney U test; Fig. 8a). When computed based 
on oligomer structures, the scores of interface sites shift significantly to more negative values 
(median difference -0.13, 𝑝 = 8.1 × 10$', two-sided Mann-Whitney U test; Fig. 8b), suggesting 
that COSMIS captures additional constraint on interface sites contributed by sites in neighboring 
subunits. We next evaluated the performance of COSMIS in predicting the pathogenicity of 
missense variants in KCN oligomers. Establishing the pathogenicity of variants in KCN genes is 
clinically significant, because they have been associated with multiple severe neurological, 
psychiatric, and cardiac disorders such as epileptic encephalopathy, schizophrenia, and long QT 
syndrome (Shieh et al., 2000). We compiled a subset of 111 and 489 unambiguously annotated 
benign and pathogenic KCN missense variants from ClinVar. On this variant set, COSMIS as a 
single metric showed strong performance (AUROC 0.854) (Fig. 8c). These results illustrate how 
COSMIS can be further applied to provide constraint maps in custom use cases and oligomeric 
structures beyond the precomputed scores we provide for 80.3% of proteins in the human 
proteome. 

Discussion 
Establishing the clinical relevance of VUS is one of the largest challenges to genomics-enabled 
precision medicine (MacArthur et al., 2014; Richards et al., 2015; Starita et al., 2017; Manolio et 
al., 2019). In this work, we hypothesized that patterns of genetic variation at neighboring sites in 
3D collectively reflect levels of functional constraint and that quantifying this constraint could aid 
VUS interpretation. We developed the COSMIS framework and analyzed the distribution patterns 
of human genetic variants in the context of their 3D protein structures. Our framework enabled us 
to map spatial constraint at the resolution of individual sites in 80.3% of proteins in the human 
proteome. We further showed that our COSMIS score is accurate in predicting gene essentiality 
and variant pathogenicity and in aiding in the interpretation of de novo variants. Furthermore, it 
complements information provided by other commonly used metrics like phylogenetic constraint 
between species. The COSMIS framework is flexible and easily expanded to new applications as 
illustrated by our detection of constrained sites and pathogenicity predictions in ion channels using 
custom-built oligomeric homology models. We expect that our framework can be applied to a 
wider set of genes than analyzed in this work as the structural coverage of the human proteome 
and other species continue to expand. 

Compared to existing constraint quantification approaches, our framework has several 
features that are particularly valuable for variant interpretation. First, our site-specific COSMIS 
score quantifies the variation in constraint at a finer scale than methods that generate a single 
score for an entire gene or subregions of a gene. The COSMIS score is thus more precise and 
specific for interpreting missense variants than many common approaches. Second, our 
framework quantifies the constraint of sites in their local 3D structural context. Compared to 
metrics that are based on 1D sequences, local 3D structural context enabled the COSMIS score 
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to capture native 3D interactions between residues that are far apart in sequence yet important 
for maintaining structural stability and functional integrity of the index site. In addition, the contact 
set filters out residues that are close in sequence but less likely to make contribution to the 
constraint of the site because they are distant in 3D. In fact, our 3D structure-based COSMIS 
score performed significantly better than the 1D sequence-based MTR score in predicting variant 
pathogenicity, while also providing important biophysical insights into the potential functional roles 
of constrained sites. Third, our approach accounts for variation in mutation rates in the neutral 
model. This led to significantly better performance than a recent 3D-aware metric (MTR3D). 
Fourth, COSMIS provides scores for more than 80% of the human proteome by incorporating 
new high quality structural models from AlphaFold, significantly more than previous structure-
based analyses. Fifth, COSMIS can easily be applied to structures for new proteins or complexes, 
as illustrated on KCN genes. (COSMIS’s strong performance on the KCN variants, suggests that 
it may be particularly well suited to pathogenicity prediction in ion channels.) Finally, COSMIS is 
complementary to other metrics. Combining the COSMIS score with phylogenetic conservation 
metrics yielded significantly higher performance than either approach alone in predicting variant 
pathogenicity. This suggests that future ensemble variant pathogenicity predictors may benefit 
from integrating spatial constraint as quantified by the COSMIS score. 

Our approach nevertheless has several limitations. First, the missense burden analysis 
and statistical identification of constrained contact sets is highly dependent upon the number and 
quality of variants used as references for the standing variation dataset. Current gnomAD samples 
carry only an average 6.3% and 10.3% of all possible missense and synonymous variants per 
contact set, respectively (Supplementary Fig. 10). As larger and more diverse reference genetic 
variation cohorts continue to increase the number of observed variants in each gene, even more 
accurate estimates of constraint on contact sets will be possible. It may also be possible to 
decrease the contact set distance threshold to capture more specific 3D interactions. Second, the 
COSMIS score does not directly consider the physicochemical severity of amino acid substitutions. 
While these patterns likely contribute to the patterns of observed variation and mutability, explicit 
consideration of the severity of amino acid substitution could improve estimates of site constraint. 
For instance, sites tolerant to both conservative and non-conservative substitutions are likely to 
be under less constraint than sites that are only tolerant to conservative substitutions. Third, while 
it is known that sites harboring variants with lower minor allele frequencies are likely under 
stronger selection pressure (Hartl, 1989), as with previous approaches (Samocha et al., 2014; 
Gussow et al., 2016; Lek et al., 2016; Traynelis et al., 2017; Havrilla et al., 2019; Karczewski et 
al., 2020), we counted the number of unique variants observed at each site and did not explicitly 
account for their MAFs. Incorporation MAFs and demographic structure into the formulation of 
scores such as the pLI (Lek et al., 2016), MTR (Traynelis et al., 2017), and COSMIS remains a 
promising topic. We anticipate that our framework can be further improved in the future by 
including larger human variation datasets, consideration of additional amino acid properties, and 
accounting for MAF. 

Looking forward, we anticipate that the structural landscape of constrained sites provided 
by COSMIS will facilitate prioritization of sites for mechanistic or functional investigation, 
especially those that have not been previously associated with clinically relevant phenotypes. For 
example, we have demonstrated that high-confidence constrained sites have a >10-fold 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460390
http://creativecommons.org/licenses/by-nc-nd/4.0/


enrichment for pathogenic variants, yet 9,249 out of the 10,955 proteins (84.4%) harboring at 
least one high-confidence constrained site lack any unambiguously annotated pathogenic 
variants in ClinVar. Variants at the constrained sites of some of these proteins are likely to be 
embryonic lethal, but many likely have pathogenic potential. Using COSMIS to guide investigation 
of the effects of variation at these sites on protein function will contribute novel insights into human 
health and disease.  

Methods 
Estimating mutation probabilities using the 1000 Genomes Project variant set 

We estimated sequence-context-dependent trinucleotide synonymous and missense mutability 
following previous procedures (Samocha et al., 2014; Lek et al., 2016). Briefly, we retrieved all 
single nucleotide variants from the 1000 Genomes Project variant set (phase 3, 2504 individual 
genomes) (Auton et al., 2015). We filtered this initial set of variants to include only single 
nucleotide variants and excluded multiallelic variants, indels, and any variants with a filter tag 
other than “PASS”. We focused on variants in intergenic regions obtained by excluding regions 
of the genome spanned by genes as annotated in GENCODE release 34 (Frankish et al., 2019). 
We did not consider variants in the coding genome since they are enriched for purifying selection. 
For the entire intergenic genome, we counted every instance of each of the 64 trinucleotide 
sequences. We then identified all variable sites in the 1000 Genomes data with an annotated 
ancestral allele and assumed that each variable site represents a single ancestral mutation. To 
compute the probability of a trinucleotide 𝑋𝑌𝑍 mutating to 𝑋𝑌,𝑍, we divided the number of 𝑌 → 𝑌, 
mutations in the context of 𝑋𝑌𝑍 by the total number of occurrences of 𝑋𝑌𝑍. As described in 
previous work (Samocha et al., 2014; Lek et al., 2016), we scaled the probability by a 
proportionality constant (Neale et al., 2012) to derive the probability for one generation. In the end, 
we obtained a 64 by 3 matrix in which each row contains the probability of each of the three 
possible mutations of the central nucleotide of a given trinucleotide context. Protein-level 
mutability estimates obtained using our matrix agreed with previous estimates (Supplementary 
Fig. 7). Our mutability table is available in the source code available at our GitHub repository: 
https://github.com/CapraLab/cosmis. Our framework also enables the use of a custom mutation 
matrix. 

Mapping human reference proteome to Ensembl transcripts 

We started with the human reference proteome (UP000005640, UniProt release 2021_03), 
containing the reference amino acid sequences for a total of 20,600 proteins (Bateman et al., 
2017). To determine whether the COSMIS scores for a protein can be computed, we first obtained 
the Ensembl stable transcript IDs for the protein through programmatic access of the UniProt 
database identifier mapping service (https://www.uniprot.org/help/api_idmapping). We used the 
transcript IDs as keys to extract coding sequence (CDS) from Ensembl CDS database. A valid 
CDS is necessary for the computation of COSMIS score because it is the basis for our mutation-
probability-aware variant simulation procedure. A CDS is valid only if it begins with ATG, ends 
with a stop codon, and its translated amino acid sequence matches the UniProt reference 
sequence. We then used the transcript ID corresponding to the valid CDS as key to extract variant 
statistics from GRCh38-lifted gnomAD v.2.1.1. We used vcftools to remove all sites with a FILTER 
flag other than PASS gnomAD v.2.1.1 and only kept single nucleotide variants. Completing this 
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procedure for each reference protein resulted in a total of 16,533 proteins for which a “high-quality” 
protein 3D structure is also available in PDB, SWISS-MODEL repository, or AF2 database (see 
below).  

Per amino acid site synonymous and missense mutability of reference protein sequence 

We estimated the synonymous and missense mutability of each amino acid in the matched 
transcript of the protein in a nucleotide sequence context-dependent manner. In brief, the local 
trinucleotide sequence context was used to determine the mutability of each base in the coding 
region mutating to each other possible base and to determine the coding impact of each possible 
mutation. These mutability values were summed across the codon to determine its synonymous 
missense mutability. Specifically, for a given base in the codon, the trinucleotide sequence context 
is determined according to the coding sequence of the transcript as provided by the Ensembl 
CDS resource. The probability of the middle base mutating to one of the three other bases is 
queried in the mutation probability table and the type of change it would create is determined. The 
mutability is added to a running total for the type of mutation it would cause. This is repeated for 
the two other possible mutations for every base in the codon. In the end, we obtained a pair of 
per-codon synonymous and missense mutability for each codon in each transcript.  

Estimating the per-protein expected number of synonymous and missense variants 

We estimated the per-protein expected number of synonymous and missense variants through a 
fitted linear regression equation of per-protein total variant count on mutability. We first extracted 
50,456 Ensembl transcripts for which SNVs were reported in gnomAD and whose CDS also met 
our criteria. For each of these transcripts, we then computed the synonymous and missense 
mutability of all codons and summed them to produce per-protein total synonymous and missense 
mutability (Supplementary Table 10). Our protein-level mutability estimates correlated strongly 
with previous estimates (Pearson’s R of 0.94 and 0.95 for synonymous and missense, 
respectively; Supplementary Fig. 7) (Samocha et al., 2014). In parallel, we also tallied the total 
synonymous and missense variant counts reported in gnomAD for each of these transcripts. The 
total numbers of unique synonymous and missense variants from the 16,533 proteins studied in 
this work are 2.0 million and 4.1 million, respectively (Supplementary Table 10). To establish the 
relationship between mutability and expected variant count under the null hypothesis of minimal 
constraint, we regressed the number of synonymous variants on the total synonymous mutability 
per transcript. As expected, and consistent with previous observations, we found that the total 
synonymous variant count can be accurately predicted by total synonymous mutability with a 
simple linear regression model ( 𝑦3 = 6.42 × 10$) × 𝜇 − 0.18 , where 𝜇  is per-protein total 
synonymous mutability, 𝑅 = 	0.95, Supplementary Fig. 8). As most synonymous variation is under 
minimal selective pressure, this model represents the relationship between mutability and 
observed variation when selection pressure is minimal. We thus estimated the expected count of 
missense variants 𝑡"  under minimal selection for each of the transcripts by applying this 
regression model to their total missense mutability.  

Mapping transcripts to protein structures 

Computing the COSMIS score requires projecting missense variants onto 3D protein structures. 
We used the Protein Data Bank (PDB) as our primary source of protein structures. We used a 
summary table processed by SIFTS (https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html, 
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pdb_chain_uniprot.tsv.gz) (Dana et al., 2019) to obtain an one-on-one mapping between PDB 
chains and UniProt accession numbers. The PDB contains many cases where multiple PDB 
chains map to a single UniProt accession number. In these cases, we selected the PDB structure 
that has the most resolved amino acid residues. We also required PDB structures to have a 
resolution better than 5 Å and to cover as least one third of the reference amino acid sequence. 
If multiple PDB structures cover a protein sequence equally well, we selected the one that has 
the best resolution. We excluded structures for which sidechain coordinates are not resolved. For 
proteins for which no experimental structure in the PDB meets our criteria, we searched and 
retrieved structural models from the SWISS-MODEL repository (July 2021 release) (Bienert et al., 
2017) and the AlphaFold protein structure database (AF2) (Tunyasuvunakool et al., 2021). The 
SWISS-MODEL Repository is a database of annotated 3D protein structure models generated by 
the SWISS-MODEL homology-modeling pipeline (Waterhouse et al., 2018). The AF2 database is 
a collection of 3D protein structures for the human reference proteome predicted using the highly 
accurate AlphaFold2 method (Jumper et al., 2021). We first searched the SWISS-MODEL 
repository for models that have a sequence identity of at least 25% and cover at least one third 
of the amino acid sequence of the target sequence, in consideration of increasing the number of 
covered proteins and maintaining a reliable level of homology model quality (Cavasotto and 
Phatak, 2009). In cases where multiple models satisfied these criteria, we selected the model with 
the highest sequence coverage to maximize the set of structure-mappable variants. For proteins 
with no homology models that meet our criteria, we relied on the AF2 structure database. In these 
cases, COSMIS scores were computed only if the AF2 predicted structure has at least one third 
of all residues predicted with a pLDDT > 50 (Jumper et al., 2021), and only such predicted 
residues were included in the computation of contact sets.  

Residue-level mapping between Ensembl transcript and protein structure 

The sequence of the experimental construct of a protein often does not match that of the reference 
sequence given in UniProt; e.g., the amino acid at position 𝑖 in the PDB file might be shifted by a 
few positions relative to its position in the translated peptide sequence of the corresponding 
transcript. We thus employed the SIFTS residue-level mapping resource (Dana et al., 2019) to 
maintain consistency between the UniProt and PDB residue numbering for each PDB chain-
UniProt sequence pair. Specifically, for each PDB entry that was used as the 3D structure for a 
reference amino acid sequence, we downloaded the residue-level cross-reference data in XML 
format. Each of these XML file serve as the reference to ensure the accuracy of the mapping of 
each individual variant observed in gnomAD onto its location in the protein structure. Variants at 
positions that were not covered by protein structures were dropped. 

Construction of the COSMIS score 

For a protein sequence, the COSMIS score quantifies the constraint on a spatial region centered 
on each site of the sequence based on a reference protein structure. Construction of COSMIS is 
based on the concept of a contact set 𝑆. The contact set of site 𝑟, 𝑆-, includes all sites in the 
reference structure whose Cβ atoms (or Ca atoms in the case of glycines) are within 8 Å of the Cβ 
atom of 𝑟  and site 𝑟 itself. Conceptually, 𝑆-  encloses the local 3D spatial neighborhood 
surrounding site 𝑟 in the reference structure and typically includes 2-3 residues that are sequence 
neighbors of site 𝑟 and important for determining the local secondary structure of 𝑟. But more 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460390
http://creativecommons.org/licenses/by-nc-nd/4.0/


importantly, 𝑆- also captures sites that are far apart in sequence but close in space and most 
likely to contribute to the structural and functional integrity of 𝑟. For a protein that has 𝐿 amino 
acid sites, we thus have 𝐿 contact sets, one for each site. The spatial constraint is quantified for 
each contact set and assigned to the site represented by the contact set. 

We represent 𝑆- by residue indices. Our site-level mapping between amino acid sites and 
sites in protein structures enables us to count the observed number of missense variants within 
each contact set. We designate this count 𝑚!. The COSMIS score of each contact set quantifies 
the deviation of 𝑚! from a null distribution of the number of missense variants within the contact 
set. We derived this null distribution through simulations. We designate this expected count of 
missense variants 𝑡". To derive the null distribution of missense variants within a contact set, we 
first constructed a normalized missense mutability of each codon in the transcript, that is 

𝑝. =
𝑢.

∑ 𝑢/0
/1+

 

where 𝑝. is the missense mutability of codon 𝑗 normalized to the total missense mutability of the 
transcript,  𝑢. is the sequence context-dependent, unnormalized missense mutability of codon 𝑗 
described in a previous section, and 𝐿 is the total number of amino acid sites in the protein 
sequence.   

For each permutation, we then drew the missense variants from a multinomial distribution, 
where the number of trials is the total expected number of missense variants,  𝑡", for the protein 
and the probability for each amino acid site is 𝑝.. We repeated this 𝑁	 = 	10000 times. After each 
permutation, we count the number of missense variants sampled for each contact set. We denote 
the mean and standard deviation of this null distribution as 𝑚" and 𝑚#, respectively. The COSMIS 
score is then computed as  

𝐶𝑂𝑆𝑀𝐼𝑆 = 2!$2"
2#

. 

We also count the number of times out of the 𝑁 permutations the permuted count of missense 
variants in the contact set is less than or equal to the observed number 𝑚!. We designate this 
count 𝐾. We calculated the empirical permutation 𝑝 value using the following formula:  

𝑝3456" =
(8	:	+)	
(<	:	+)

. 

Gene lists 

We obtained the lists of genes of different levels of essentiality from https://github.com/macarthur-
lab/gene_lists. These include: 294 haploinsufficient genes with sufficient evidence for dosage 
pathogenicity (level 3) as determined by the ClinGen Dosage Sensitivity Map as of Sep 13, 2018 
(Rehm et al., 2015), 683 essential genes deemed essential in multiple cultured cell lines based 
on CRISPR/Cas screen data (Hart et al., 2017), 709 autosomal dominant disease genes from 
OMIM (Blekhman et al., 2008; Berg et al., 2013), 1183 autosomal recessive disease genes from 
OMIM (Blekhman et al., 2008; Berg et al., 2013), 913 non-essential genes deemed non-essential 
in multiple cultured cell lines based on CRISPR/Cas screen data (Hart et al., 2017), and 284 
olfactory receptors (Mainland et al., 2015). Several of these lists were also previously used to 
benchmark the pLI metric that quantifies intolerance to functional variation (Lek et al., 2016). 
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Genes in these lists are identified by their HGNC symbols. To link with COSMIS scores (indexed 
by UniProt access numbers), we mapped HGNC symbols to UniProt accession numbers through 
programmatic access of the UniProt database identifier mapping service 
(https://www.uniprot.org/help/api_idmapping). Collectively, our framework provides scores for 
213 haploinsufficient, 622 essential, 584 dominant, 999 recessive, 721 non-essential, and 284 
olfactory genes. These gene lists are available at our GitHub repository. 

Intra- and inter-species constraint metrics 

We focused our comparison of COSMIS with other evolutionary constraint metrics rather than 
ensemble variant effect prediction methods derived through machine-learning or score 
aggregation. In particular, our primary interest was to compare COSMIS with recently developed 
human-variation-based constraint metrics, i.e., the residual variation intolerance score (RVIS) 
(Petrovski et al., 2013), the missense Z score (Samocha et al., 2014; Lek et al., 2016), the 
probability of loss-of-function intolerance metric (pLI) (Lek et al., 2016), missense tolerance ratio 
(MTR) (Traynelis et al., 2017), and missense tolerance ratio 3D (MTR3D) (Silk et al., 2021). 
Additionally, we compared COSMIS with GERP++ (Davydov et al., 2010), phyloP (Pollard et al., 
2010), phastCons (Siepel et al., 2005), and ConSurf (Armon et al., 2001) to investigate the 
potential synergistic effects of combining intra- and inter-species metrics for predicting variant 
pathogenicity. We computed the ConSurf scores using the Rate4Site program (Pupko et al., 2002) 
with default parameters and no branch length optimization. We obtained the 100-way multiple 
sequence alignment for each of the proteins and the tree file (hg38.100way.nh) from the UCSC 
Genome Browser. We computed relative solvent accessibility using DSSP 3.0 (Kabsch and 
Sander, 1983) within the Biopython framework (Cock et al., 2009). The sources of other scores 
were listed in Supplementary Table 11. The subset of amino acid sites in the human reference 
proteome for which all scores are available can be found at our GitHub repository: 
https://github.com/CapraLab/cosmis. 

COSMIS score distribution of ClinVar variants 

We evaluated the ability of COSMIS to predict pathogenicity of variants using ClinVar variants 
(Landrum et al., 2018) (retrieved in August 2021) as an evaluation set. Our evaluation set 
consisted of solely ClinVar missense variants that were labeled as "pathogenic" or "likely 
pathogenic" for true positive (pathogenic) variants and "benign" or "likely benign" for true negative 
(benign) variants. All variants for both sets were required to have a review status of at least one 
star and no conflicting interpretation. Due to the dependency of COSMIS score on 3D structures, 
we also required variants in the evaluation set to be mappable to our 3D structure sets. Any 
ClinVar variant designated as “no assertion criteria provided”, “no assertion provided”, “no 
interpretation for the single variant”, or not covered by protein structures was excluded from the 
evaluation set. Collectively, these restrictions resulted in 19,596 benign and 17,858 pathogenic 
variants for which the COSMIS score can be computed. These variants and their COSMIS scores 
are available in Supplementary Table 5. 

COSMIS score distribution of de novo missense variants 

The set of de novo missense variants was obtained from a previous analysis (Samocha et al., 
2017). This set consists of 5113 de novo missense variants in 5620 neurodevelopmental disorder 
probands (“case” variants) and 1269 de novo missense variants in 2078 unaffected siblings of 
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autism spectrum disorder probands (“control” variants). Following the procedure of residue-level 
mapping, we were able to map 2,271 case variants and 541 control variants to protein 3D 
structures and compute the COSMIS scores for these variants. These variants and their COSMIS 
scores are available in Supplementary Table 7. 

Application of COSMIS to potassium ion channels 

We selected a set of 41 clinically relevant potassium ion channels for which missense variants 
have been unambiguously annotated in ClinVar following the same procedure as stated in the 
previous section. Experimental structures are available for KCNH2, KCNJ11, KCNQ1, and 
KCNQ2, KCNQ4 in the PDB (as of Dec. 2020). For the rest 36 potassium channels, we leveraged 
their high sequence identity (mean sequence identities between template and target ion channels 
are 56.6%) to the potassium channels with available structures and constructed homology models 
in their oligomeric states using the SWISS-MODEL interactive workspace (Waterhouse et al., 
2018). We removed residues with a QMEAN score of < 0.3 in the intracellular intrinsically 
disordered regions of these ion channels. More information about templates used in our homology 
modeling and evaluations of model qualities can be found in Supplementary Table 9. Using these 
potassium channel 3D structures, we computed two sets of COSMIS scores, based on monomers 
and oligomers, respectively, for 4,762 interface and 14,331 non-interface sites. Collectively, we 
were able to map and computed the COSMIS scores for a total of 111 and 489 unambiguously 
annotated benign and pathogenic KCN missense variants from ClinVar. Our ion channel variant 
dataset, together with modeled ion channel structures and their precomputed COSMIS scores, is 
available at https://github.com/CapraLab/cosmis. 

Data availability 
Precomputed COSMIS scores that are also mapped to protein structures for 16,533 proteins from 
the UniProt human reference proteome, estimated sequence-context-dependent nucleotide 
mutability, and the expected number of synonymous and missense variants are available and can 
be downloaded at https://github.com/CapraLab/cosmis.  
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In addition to the precomputed scores, COSMIS can also be downloaded and run as a standalone 
application locally. The source code of COSMIS and all scripts that can be run to reproduce the 
results and figures of this work are available at GitHub (https://github.com/CapraLab/cosmis). 
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Figures 

 
Fig 1. Schematic of the COSMIS 3D spatial constraint quantification framework. The COSMIS 
framework consists of mapping single nucleotide variants (SNVs) from gnomAD to human reference protein 
sequences and protein 3D structures, the computation of 3D contact sets, tallying of unique missense 
variants observed in contact sets, and comparison of observed missense variant counts to a null distribution 
simulated based on a mutation-spectrum-aware statistical model. We quantify the constraint on the index 
amino acid site with the Z score of the observed missense variant count (𝑚! ) compared to the null 
distribution. 
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Fig 2. Protein 3D context differs from 1D sequence context. a) To quantify the 3D spatial context of 
each amino acid site (𝑖), our framework defines its contact set as the amino acid residues that are in contact 
(Cb < 8 Å) with the residue. For the example index site (𝑖), the contact set is (𝑖, 𝑗", 𝑗#, 𝑗$, 𝑗%). Numbers below 
the 1D sequence schematic represent residue sequence positions and illustrate that contact set residues 
may be distant in sequence from the index site. b) The COSMIS framework covers 80.3% of the reference 
human proteome. Defining the contact set of an amino acid site requires protein 3D structures. We used 
PDB and SWISS-MODEL as our primary sources of protein 3D structures. For proteins with no structure in 
the PDB or SWISS-MODEL that meet our criteria (Methods), we analyze models from the AlphaFold2 
structure database (AF2). Numbers inside the pie chart represent fractions of the human reference 
proteome (20,600 proteins) for which we used the corresponding protein structure resource to compute 
COSMIS scores (Supplementary Table 1). c) Contact sets capture long-range sites (separated by more 
than 15 residues along the 1D sequence) that interact in 3D. For example, residues 𝑗" and 𝑗% in panel a) 
are not neighbors in 1D sequence, but nevertheless form long-range contacts with the index site 𝑖. The bar 
plot shows the fraction of all 6.1 million sites with at least a certain fraction of long-range 3D contacts in 
their contact sets. d) Many neighboring sites in 1D sequence do not form 3D contacts with an index site. 
Defining the contact set eliminates these sites from consideration. For example, residues 𝑗& and 𝑗$ in panel 
a) are 1D sequence neighbors (within 15 residues) of the index site 𝑖 but do not form 3D contacts with it. 
The bar plot shows the fraction of all 6.1 million sites that have at least a certain fraction of 1D sequence 
neighbors that do not form 3D contacts. 
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Fig 3. The COSMIS score quantifies depletion of missense variants in contact sets.  a) Distribution of 
the deviation of the observed from the expected number of synonymous (blue) and missense (red) variants 
per-transcript computed from the mutability-aware model (Methods). The median of the deviation is roughly 
centered at zero (1.9) for synonymous variants but is significantly shifted towards negative values (more 
constraint) for missense variants (median -29.1, p < 2.2 × 10'#() , two-sided Mann Whitney U test). b) 
Distribution of the COSMIS scores for 6.1 million unique amino acid sites of the reference human proteome. 
As expected, an average amino acid site in the human proteome is depleted of missense variants in its 
contact set (median COSMIS score -0.47) due to structural and/or functional constraint. c) Distribution of 
per-protein fraction of high-confidence constrained sites (empirical p < 0.01). 
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Fig 4. The COSMIS score quantifies constraint at amino acid resolution and provides structural 
insights into variant pathogenicity. a) COSMIS score distributions are significantly different between loss 
of function tolerant, unsure, and intolerant (as defined by pLI) genes. The COSMIS scores of amino acid 
sites in intolerant genes differ from those in tolerant genes (median -1.1 vs -0.12). b) COSMIS scores of 
UBA5 sites mapped to structure of one subunit of a dimerized UBA5 bound with the UFM1 target protein. 
UBA5 is predicted to be LoF tolerant, but it exhibits substantial constraint on specific spatial regions. 
Structures of all subunits of the complex are rendered in surface. c) Locations of the top 10% most 
constrained sites in UBA5 ranked by COSMIS score. Sites are rendered in spheres and colored according 
to their likely functional roles. Location of variant p.Met57Val implicated in early-onset encephalopathy is 
indicated. Proteins are rendered in cartoons. 
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Fig 5. The COSMIS score is strongly correlated with both pathogenicity and gene constraint level. 
a) COSMIS score distributions for 19,346 benign and 14,824 pathogenic variants that are unambiguously 
annotated in ClinVar (Methods). Pathogenic variants have significantly more constrained 3D spatial 
neighborhoods (COSMIS score median -1.1) than benign variants (median score 0.0) (𝑝 < 2.2 × 10'#(), 
two-sided Mann Whitney U test). b) Odds ratio (OR) of ClinVar pathogenic variants versus benign variants 
for different COSMIS score percentile bins (lower bins correspond to more constrained COSMIS scores). 
Amino acid sites with lower COSMIS scores are enriched for pathogenic variants whereas sites with higher 
scores are depleted of pathogenic variants. The horizontal dashed line indicates OR = 1. c) COSMIS score 
distributions of amino acid sites in six groups of genes with different functional annotations (and the dataset 
as a whole). As the anticipated functional constraint on each category increases (top-to-bottom), amino 
acid sites in genes in the category have more constrained COSMIS scores on average.  
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Fig 6. The COSMIS score is more predictive of variant pathogenicity than other constraint metrics. 
a) Comparison of the performance of COSMIS with five other constraint scores in predicting the 
pathogenicity of a total of 8,062 benign and 7,256 pathogenic missense ClinVar variants for which all scores 
are available. COSMIS significantly outperforms the other methods (AUROC 0.733 vs. 0.665 for MTR3D, 
the next best-performing method, 𝑝 = 2.5 × 10$*& , two-sided DeLong’s test). b) A heatmap of 
Spearman rank correlations (absolute values) between four phylogenetic conservation scores (GERP++, 
phyloP, phastCons, ConSurf) and six constraint scores (COSMIS, MTR, MTR3D, RVIS, pLI, Missense Z) 
that are constructed based on human population genetic variants. c) COSMIS is complementary to 
phylogenetic constraint methods. ROC curves of logistic regression models integrating different 
combinations of the ten methods in panel b) at predicting the pathogenicity of the variants from ClinVar. 
Model 1: MTR + MTR3D + RVIS + pLI + Missense Z; Model 2: COSMIS + ConSurf; Model 3: all scores + 
relative solvent accessibility. d) A zoomed-in view of the high-confidence region of ROC space (bounded 
by the dashed lines in c). The improvement from adding COSMIS to ConSurf over ConSurf alone is mainly 
due to better performance in this high-confidence region. 
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Fig 7. COSMIS score improves interpretation of de novo missense mutations from 
neurodevelopmental disorders. a) COSMIS score distributions for de novo missense mutations from 
neurodevelopmental disorder cases (Case) and from unaffected siblings of autism spectrum disorder 
probands (Control). Case variants have a significantly more constrained spatial neighborhoods than control 
variants (median COSMIS -0.83 vs. -0.39,  𝑝 = 3.0 × 10'"#, two-sided Mann Whitney U test). b) Case 
variant enrichment analysis for intra- and inter-species constraint metrics at the 10th percentile of most 
constrained sites. COSMIS has the highest enrichment for cases (odds ratio (OR) 3.6, 95% confidence 
interval [2.3, 5.7]). Error bars are 95% confidence intervals of ORs. Results of this OR analysis are 
consistent across thresholds other than the 10th percentile (Supplementary Fig. 9). 
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Fig 8. Applying COSMIS to custom-built oligomeric structural models facilitates interpretation of 
potassium channel variants. a) COSMIS score distributions for interface and non-interface amino acid 
sites in 41 oligomeric potassium ion channels. Overall, interface sites involved in oligomerization (making 
more 3D contacts in oligomers than in monomers) have a significantly lower COSMIS scores than non-
interface sites (median -1.3 vs. -1.1, 𝑝 = 1.3 × 10'"%, two-sided Mann Whitney U test). b) COSMIS scores 
of interface sites computed based on oligomers are generally lower than those computed based on 
monomers (median difference -0.13, 𝑝 = 8.1 × 10'), two-sided Mann-Whitney U test). c) COSMIS score 
performs well (AUROC 0.854) at predicting the pathogenicity of 111 benign and 489 pathogenic potassium 
channel missense variants curated from ClinVar.  
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