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Abstract

Prediction of residue-level structural attributes and protein-level structural classes helps model 

protein tertiary structure and understand protein function. Existing methods are either specialized 

to only one class of proteins or predict one specific type of residue-level attribute. In this 

work, we develop a new deep-learning method, named Membrane Association and Secondary 

Structure Predictor (MASSP), for accurately predicting both residue-level structural attributes 

(secondary structure, location, orientation, and topology) and protein-level structural classes 

(bitopic, α-helical, β-barrel, and soluble). MASSP integrates a multi-layer 2D convolutional 

neural network (2D-CNN) with a long short-term memory (LSTM) neural network into a multi-

tasking framework. Our comparison shows that MASSP performs equally well or better than state-

of-the-art methods for predicting residue-level secondary structures, boundaries of transmembrane 

segments, and topology. Furthermore, it achieves outstanding accuracy in predicting protein-level 

structural classes. MASSP automatically distinguishes the structural classes of input sequences 

and identifies transmembrane segments and topologies if present, making it broadly applicable 
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to different classes of proteins. In summary, MASSP’s good performance and broad applicability 

make it well suited for annotating residue-level attributes and protein-level structural classes at the 

proteome scale.

Graphical Abstract
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Introduction

Protein structures are essential to understanding protein function, unraveling disease 

mechanisms, and the design of novel therapeutic molecules. While innovations in 

experimental techniques continue to help determine new structures at a rapid pace, 

determining the structures of all proteins by experimental techniques remains impractical. 

Thus, computational prediction of protein tertiary structures from amino acid sequences 

continues to be an area of active research1. While exciting progress was made in the past 

few years, especially in the 14th Critical Assessment of Techniques for Protein Structure 

Prediction (CASP14)2, protein tertiary structure prediction is still a challenging problem for 

many proteins2–4.

Accurate prediction of secondary structures provides useful information for predicting 

protein tertiary structures. Over the past decades, a plethora of methods were developed for 

secondary structure prediction5,6. Some of the first methods relied on statistical propensities 

of amino acids to form particular structures7, simple nearest-neighbor algorithms that 

involve finding short sequences of known structure that closely match stretches of the 

query sequence8, or explicit modeling of the contribution that neighboring residues make 

to the probability of a given structure state9. The accuracy of these methods hovered under 

70% for the so-called Q3, a three-state prediction that classifies amino acids in likely 

helix (H), strand (extended, E), or coil (C) states. More accurate methods, better than 70% 

in Q3, were developed that use machine-learning-based models10. The machine-learning 
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models powering these methods are often artificial neural networks11–17 that take sequence 

profiles generated from multiple sequence alignments as input11,12 or couple sequence 

profiles with nonlocal interactions from predicted tertiary structures to boost the accuracy of 

secondary structure prediction17. Recently, motivated by unprecedented performance of deep 

neural networks in computer vision problems18, deeper neural network architectures, such 

as convolutional neural networks (CNNs) and recurrent neural networks were applied to 

protein secondary structure prediction with accuracy improving to above 80% in Q36,19–21.

For transmembrane proteins (TMPs), an additional essential component of predicting the 

tertiary structure is to first locate all the TM segments and the orientation of the protein 

with respect to the membrane. These tasks are collectively known as “topology prediction”. 

Several algorithms have been developed over the past decades for predicting the topology 

of α-helical TMPs (TM-alpha) or β-barrel TMPs (TM-beta)22,23. The earliest method 

of Kyte and Doolittle24 for TM helix (TMH) prediction computes simple “hydropathy 

plots” to identify probable TMHs. While this method is conceptually simple and easy 

to implement, it can neither predict the “inside-outside phasing” of the helices relative 

to the cytoplasm, i.e. topology, nor the location of TM strands in TM-beta proteins. By 

combining hydropathy analysis and the “positive-inside rule”, the observation that positively 

charged residues are more abundant in cytoplasmic as compared to periplasmic regions 

of bacterial inner membrane proteins25, a method dubbed TOP-PRED was developed for 

predicting TMHs and their topologies26. While TOP-PRED identified all 135 TMHs in 

the 24 proteins tested with only one overprediction and correctly predicted the topology 

of 22 proteins, no results were reported as to how accurate TOP-PRED can locate the 

boundaries (N- and C- terminal ends) of TMHs. Aimed at predicting both the boundaries 

and topology of TMHs, the PHDhtm method, whose driving predictor is a two-level neural 

network system trained on 69 transmembrane proteins, was developed27,28. TMHMM and 

HMMTOP29 are the first methods to model membrane topology of IMPs with hidden 

Markov models. For transmembrane segment detection, MEMSAT330, OCTOPUS31 (for 

TM‐alpha proteins), BOCTOPUS232 and PRED-TMBB233 (for TM‐beta proteins) are 

classic methods. Recent innovations in deep learning also enabled the development of 

more sophisticated methods, such as TMP-SS34 and DMCTOP35, for membrane segment 

detection and topology prediction.

While these existing methods have been widely used, they are either specialized on one class 

of proteins or developed to predict one specific type of residue-level attributes. In the current 

work, we leverage recent advances in deep neural network (DNN) architectures to develop 

a novel method, Membrane Association and Secondary Structure Prediction (MASSP), 

that simultaneously predicts residue-level structural attributes (secondary structure, location, 

orientation, and topology) and protein-level structural classes (bitopic, TM-alpha, TM-beta, 

and soluble). This is achieved by integrating a multi-layer 2D-CNN with a LSTM neural 

network into a multi-tasking framework. We extensively compare MASSP with several 

classic and state-of-the-art methods and show that MASSP performs equally well or better 

for predicting residue-level attributes. Furthermore, MASSP achieves high accuracy in 

predicting protein-level structural classes and is broadly applicable to different classes 

of proteins. The preliminary version of this method was successfully adopted in two 

previous studies for de novo tertiary structure prediction of TM-alpha proteins36,37. In 
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this manuscript, we describe the method in detail, demonstrate its broad applicability, and 

discuss aspects of its improved performance compared to some of the most popular methods 

in the field.

Methods

Datasets

The sets of bitopic, TM-alpha, and TM-beta proteins were all obtained from the OPM 

database38. The datasets were pruned to 25% sequence identity using the PISCES server39, 

and structures for which the resolution is worse than 3.0 Å or were determined using 

techniques other than X-ray crystallography or have less than 40 residues were excluded. 

The final datasets consist of 240 TM-alpha protein chains, 54 bitopic, and 77 TM-beta 

protein chains. This dataset was augmented by adding 372 (accounting for 50% of the 

dataset) soluble protein chains. The set of soluble protein chains was randomly selected 

from the set of all X-ray only soluble protein chains with resolution better than 3.0 Å 

and culled at 25% sequence identity using the PISCES server39. The dataset was split 

according to the ratio 8:1:1 as training:validation:test while maintaining an approximately 

constant fractions of each class of proteins in each subset. The fractions of TM-alpha, 

bitopic, TM-beta, and soluble proteins are 31.5%, 6.8%, 11.0%, and 50.7%, respectively, 

in each subset. This resulted in three subsets containing 165080, 18293, 18571 training 

examples (residues) for which all four target attributes are available. For TM-alpha and 

bitopic proteins combined, there are 1371, 143, and 154 transmembrane helices that are at 

least 10 residues long in the training, validation, and test sets respectively, and for TM-beta 

proteins, there are 855, 89, and 104 membrane spanning beta strands that are at least 

5 residues long, respectively. The reference secondary structure elements for each chain 

were derived from the consensus identification of DSSP40, Stride41, and PALSSE42. The 

reference residue location and topology annotations for each chain were derived from the 

coordinates and membrane boundaries provided by OPM43.

Determining beta-strand orientation

The topology of each β-strand composing a barrel was identified by computing the 

difference in Z-coordinate between the first and last residue in the strand, with strands 

that ascend in the Z-axis labeled as up (U), while those that descend in Z-axis coordinate 

labeled as down (D). For orientation, residues were labeled based on whether the Cα–Cβ 
vector points to the pore (P), lipid bilayer (L), or is in solution (s).

Conventionally, three-state Hidden Markov models use interior/exterior/bilayer states and 

infer strand direction afterwards. We found this state separation to be unappealing for use in 

training neural networks because in several known structures there are trans-pore segments 

that cross from intracellular to extra-cellular space, rendering assignment of any residue 

connected to a pore-crossing segment as intracellular or extracellular ambiguous. Creating 

an intra-pore state is similarly unappealing due to known structures with dynamic helical 

plugs that occupy several states. Conversely, while there is debate in the literature about 

whether topology can be inverted in TM-alpha proteins44,45, we are aware of no TM-beta 
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proteins in which the barrel flips under physiologically relevant conditions, leaving the 

assignment of U/D/s states unambiguous.

PSSM calculation

The position-specific-scoring matrix (PSSM) of an amino acid sequence contains the log-

odds of each of the 20 amino acids observed at each of the sequence positions over 

evolutionary timescale46. To compute the PSSM for a target amino acid sequence, we 

first queried the UniRef20 protein sequence database for sequences homologous to the 

target sequence using the HHblits method47. The parameters used in the searching were 

three iterations with a e-value of 0.001, a maximum sequence identity of 0.90, a minimum 

coverage of 0.50 of the target sequence residues. The multiple sequence alignment generated 

by running HHblits was used as input to an in-house C++ utility software implementing the 

algorithm described in Altschul et al.46 to compute the floating point valued PSSM for the 

target sequence.

Network architecture

The performance of a neural network depends on many hyperparameters specifying the 

architecture of the neural network. In designing MASSP, we considered the number of 

convolutional and densely connected layers, the number of units in each layer, and the size 

of the input feature matrix. We tuned hyperparameters by training models using the training 

set and comparing model performances on the validation set. We note that the test set was 

never touched before the final model was selected.

We followed a workflow of developing deep-learning models recommended in48. 

Specifically, we started out with a very small architecture that has a total of 1339 trainable 

parameters. This model takes a 7 × 20 input feature matrix, one convolutional layer with 

weight ReLU units, and one densely connected layer with eight ReLU units. Our goal at 

this stage was to have a model that is better than a baseline model, i.e. to make sure that 

patterns in the input PSSM can be learned by the chosen type of neural network. In fact, 

after 20 epochs of training, we observed that the validation loss was still decreasing (Fig. 

S1A), indicating that a model with a larger architecture may achieve higher performance.

We next scaled up the architecture of the model by adding two additional convolutional 

layers, one additional layer of densely connected units, and increasing the number of ReLU 

units in each layer to 16, 32, 64, 32, and 64, respectively. We also expanded the size of 

the input feature matrix to cover 15 residues on each side of the central residue. The goal 

was to have a model that is sufficiently powerful. This was confirmed by observing the 

model’s performance on the validation set began to degrade only after the first four epochs 

of training (Fig. S1B).

Starting with this sufficiently powered model, we continued several rounds of 

hyperparameter tuning by scaling down the size of the architecture and adding regularization 

(see Fig. S1C and S1D for two examples). In the end, we selected a model with the flattened 

layer regularized by a 0.25 dropout rate and that appeared to have the optimal overall 

prediction accuracy on the validation set. The architecture of the final model is shown in Fig. 

1B.
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Network construction and training

MASSP is a two-tier neural network system designed for simultaneous prediction of four 

1D structural attributes and the protein class for the input amino acid sequence. The first 

tier is a multi-output deep 2D-CNN and was constructed using the functional API of the 

Keras (version 2.3.1) model-level deep-learning framework for Python (version 3.7.10), 

with TensorFlow (version 2.0.0) serving as the backend engine. The output layer of this 

multi-output 2D-CNN consists of four heads each representing a separate one of the four 

target structural attributes. The final model was trained using the Adam optimizer49 with the 

following hyperparameters: maximum learning rate = 0.001, β1 = 0.9, β2 = 0.999. Kernel 

weights of the model were initialized using the Glorot uniform initializer and updated 

after processing each batch of 64 training examples. The activation of the last layer was 

the softmax function and the loss function was the categorical cross entropy function for 

all output heads. By default, Keras sums all four losses into a global loss that is back 

propagated to update trainable weights of the 2D-CNN. We did not reweigh individual 

losses because no one target attribute can be said more important than another. We set the 

maximum number of training epochs to 100. However, the training was stopped when the 

loss on the validation set stopped decreasing for 5 consecutive epochs. The LSTM model 

was similarly trained except that the maximum number of training epochs was set to 20.

Generating predictions using other methods

PSIPRED and MEMSAT3 predictions were generated by running PSIPRED and MEMSAT3 

on test set protein sequences locally with the recommended UniRef90 sequence database 

(PSIPRED version 4.02, MEMSAT version 3.0). SPINE-X predictions were similarly 

generated by running SPINE-X 2.0 locally with the UniRef90 sequence database. RaptorX-

Property predictions were generated by running RaptorX-Property version 1.02 on test 

protein sequences with the recommended UniRef20 sequence database. Source code of 

these locally run methods were downloaded and compiled locally, and the programs 

were set up following recommendations. TMHMM2 predictions were generated by 

submitting test sequences to the TMHMM web server at http://www.cbs.dtu.dk/services/

TMHMM/. Similarly, OCTOPUS predictions were obtained from its web server at http://

boctopus.bioinfo.se/octopus/. BOCTOPUS2 predictions were generated by submitted all test 

protein sequences to the BOCTOPUS2 web server at http://boctopus.bioinfo.se/pred/ with 

default settings. PRED-TMBB predictions were generated by submitting all test protein 

sequences to the PRED-TMBB web server at http://www.compgen.org/tools/PRED-TMBB2 

in single-sequence mode with default settings. NetSurfP-2.0 predictions were generated 

by submitting test sequences to the NetSurfP-2.0 server at https://services.healthtech.dtu.dk/

service.php?NetSurfP-2.0. Similarly, TOPCONS2 predictions were generated by submitting 

test sequences to the TOPCONS server at https://topcons.cbr.su.se/pred/.

Performance measures

We employed two of the most used performance measures to evaluate MASSP and to 

compare it with other methods. The first measure, called the Q3 accuracy, is defined as the 

fraction of residues for which the three-state target attributes are correctly predicted. For 

secondary structure prediction in this work,
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Q3 =
Pℎelix + Pstrand + Pcoil

N ,

where N is the total number of predicted residues and Px is the number of correctly predicted 

secondary structures of type x. The accuracy measure for evaluating the prediction of 

location, orientation, and membrane topology were similarly defined. For example, the Q3 

accuracy for residue-level topology prediction is defined as

Q3 =
Pup + Pdown + Ps

N .

The other measure is known as the fractional overlap of segments (SOV) originally proposed 

by Rost et al50. SOV measures the percentage of correctly predicted secondary structure 

segments rather than individual residue positions, and it pays less attention to small errors 

in the ends of structural elements. Consistent with previous studies, we used the definition 

of SOV introduced by Zemla et al.51 and implemented in Perl by Liu et al52. For secondary 

structure prediction,

SOV = 100
NSOV ∑

So

minov sobs, spred + δ sobs, spred
maxov sobs, spred

len sobs

where sobs and spred represent all observed and predicted segments of helices, strands, and 

coils. So is the set of all overlapping pairs of sobs and spred for which the segments are in 

the same state. len(sobs) is the length in residues of any segment sobs; minov(sobs, spred) is 

the length of the actual overlap between any segment pair (sobs, spred) in So and maxov(sobs, 

spred) is the total extent to which at least one residue is that state. NSOV is the total number of 

residues in sobs in all pairs in plus the number of residues in any sobs that are not overlapped 

by a predicted segment of the same state. The summation represents the fraction of the 

segment pair that the observed and predicted states agree. δ(sobs, spred) is added to allow for 

some variation in segment boundaries and is defined as

δ sobs, spred = min maxov sobs, spred − minov sobs, spred , minov sobs, spred , int
len sobs

2 ,

int
len(spred)

2 .

While SOV is typically used to evaluate performance on secondary structure prediction, it 

is a general measure that is well suited for, and thus was also used in, evaluating prediction 

of the other three structural attributes in this study. To this end, we adopted the SOV_refine 

metric introduced by Liu et al.52 for computing the SOVs for the other three structural 

attributes.
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Results

Overview of MASSP

We designed MASSP as a two-tier prediction system to work with both soluble and 

membrane proteins (Fig. 1). The first tier is a multi-task multi-layer 2D-CNN that predicts 

residue-level structural attributes. The second tier is an LSTM neural network that treats the 

predictions of the first tier as natural language input and predicts the structural class of the 

input sequence.

Given an amino acid sequence, MASSP calls HHblits (version 3.0)47 to search against 

the UniRef20 sequence database for homologous proteins and to create a multiple 

sequence alignment (MSA) of the hits to the input sequence. The MSA contains essential 

evolutionary information and is then used as input to an in-house C++ utility to compute 

the corresponding position-specific scoring matrix (PSSM, see Methods). To predict the 

target attributes of a given residue, MASSP takes as input a 21 × 20 matrix consisting of a 

sliding window of 21 positions around the residue of interest (Fig. 1A). The core algorithm 

of MASSP is a multi-output deep 2D-CNN that simultaneously predicts the secondary 

structure (helix, strand, or coil, indicated by H, E, or C in Fig. 1B), location (membrane or 

solution, indicated by M or s in Fig. 1B), orientation (lipid-, pore-facing, or soluble indicated 

by L, P, or s in Fig. 1B), and topology of the residue of interest (up, down, or soluble 

indicated by U, D, or s in Fig. 1B). While a separate model could be trained for each of 

the target attributes, we chose to learn to jointly predict all target attributes simultaneously, 

because these attributes are not necessarily independent. Once all the four 1D residue-level 

structural attributes of the input protein sequence are predicted by the first tier 2D-CNN, 

the predicted symbols for each residue are combined to form four-letter “tokens”, which 

are then concatenated to form a “sentence”. Thus, a protein sequence with l residues will 

be represented by a sentence of l tokens. The “semantic” meaning of this sentence (i.e. the 

structural class of the input protein sequence) is classified using an LSTM network (Fig. 

1C).

We tuned the architecture of MASSP by following a workflow of developing deep-learning 

models recommended in48 (see Methods). For the 2D-CNN, we started out with a model 

that has a total of 1339 parameters. This “small” model confirmed that patterns in the input 

matrix are learnable (Fig. S1A). We then scaled up the model to 198187 parameters, which 

is sufficiently powerful to the point that overfitting is obvious (Fig. S1B). We continued 

several rounds of hyperparameter tuning by scaling down the size of the architecture and 

adding regularization (see Fig. S1C and S1D for two examples). The architecture of LSTM 

was similarly tuned. In the end, we selected a model with 136,651 parameters for training, 

shown in Fig. 1B, that has the optimal overall prediction accuracy on the validation set.

We developed MASSP using the experimental structures of 240 TM-alpha, 54 bitopic, and 

77 TM-beta proteins. This data set was further augmented by adding 372 (accounting for 

50% of the dataset) soluble protein subunits homology-reduced at 25% pairwise sequence 

identity level. The dataset was split according to the ratio 8:1:1 as training:validation:test 

(Tables S1, S2, S3). We used the validation set to tune hyperparameters of MASSP, such as 

number of layers and number of neurons in each layer, of the neural networks, and size of 
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the input matrix (see Methods). The final selected models of MASSP, as described above, 

was evaluated on the test set that consists of 5 bitopic, 23 TM-alpha, 8 TM-beta, and 37 

soluble proteins, contributing a total of 19416 residues for which all four target attributes are 

available.

Dataset statistics

We split the data set according to the ratio 8:1:1 as training:validation:test while maintaining 

the constant fractions of each class of proteins in each subset. As shown in Fig. 2A, each 

of the three secondary structure types is about evenly represented in the three subsets for 

TM-alpha, TM-beta, and soluble proteins. Some biases exist for bitopic proteins because 

a single bitopic protein with a large soluble domain could easily skew their representation 

among the three subsets. Likewise, membrane topologies are also similarly represented in 

the three subsets for all integral membrane protein classes (Fig. 2B). Soluble proteins are 

all considered to have a topology of outside the membrane. These three subsets each have 

165979, 18293, 19416 instances (residues) for which all four target attributes are available. 

For TM-alpha and bitopic proteins combined, there are 1371, 143, and 154 transmembrane 

helices that are at least 10 residues long in the training, validation, and test sets respectively, 

and for TM-beta proteins, there are 855, 89, and 104 membrane-spanning beta strands, 

respectively.

MASSP accurately predicts residue-level attributes

We evaluated the performance of MASSP using the Q3 (or Q2 in the case of residue 

location prediction) and the fractional segment overlap (SOV) accuracy measures. Q3 is 

the percentage of correctly predicted residues on all three types of secondary structure, 

transmembrane topology, or in the case of TM-beta proteins, residue orientation. The 

SOV measure counts the fractional extent to which predicted and experimental segments 

of secondary structure or transmembrane region overlap, with some allowance for non-

matching residues at the ends50,51 (see Methods).

Overall, MASSP achieves accurate simultaneous prediction of residue-level secondary 

structure, orientation, and transmembrane topology, with Q3s of 0.844, 0.944, and 0.928, 

respectively, over 19416 test set residues (Fig. 3A). The Q2 accuracy for residue 

location prediction over the same set of residues is 0.946. When the overall accuracy 

was decomposed according to protein classes, MASSP achieved the highest secondary 

structure prediction Q3 for TM-alpha proteins (0.884) and the lowest for soluble proteins 

(0.809) (Fig. 3B). This is likely because the lipid bilayer imposes several constraints on 

structures of integral membrane proteins, simplifying their secondary structure prediction. 

Remarkably, MASSP rarely predicts residues of soluble proteins to be membrane associated, 

as manifested by the near perfect accuracy in predicting location, orientation, and topology 

of residues of soluble proteins (Fig. 3B). Among the three classes of membrane associated 

proteins, the three membrane related attributes are much easier to predict for both bitopic 

and TM-beta proteins than for TM-alpha proteins. This is likely because the folds of 

TM-alpha proteins are generally much more complex than bitopic or TM-beta proteins.
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We also computed the per-protein distributions of the Q3 and the SOV measures (Fig. 3C 

and 3D). For secondary structure prediction, the median Q3 and SOV are 0.845 and 0.792, 

respectively. For the other three membrane protein-related attributes, the median accuracies 

for location, orientation, and topology are 0.881, 0.890, and 0.867, and the median SOVs 

are 0.755, 0.803, and 0.852, respectively, across 36 membrane proteins in the test set. These 

results indicate that MASSP achieved excellent performance in predicting residue-level 

attributes.

Accurate prediction of protein classes via a LSTM neural network

Knowing the structural class of a protein (soluble vs. transmembrane, TM-alpha vs. 

TM-beta, and bitopic vs. multi-spanning) is essential toward understanding its potential 

cellular function. MASSP builds on the residue-level predictions of secondary structures, 

membrane associations, residue orientations, and transmembrane topologies and leverages 

the power of the LSTM recurrent neural network architecture53 to accurately predict protein 

classes. In this LSTM model, each sequence is treated as a single data point and is 

processed by iterating through the sequence elements and maintaining a state containing 

information relative to what it has seen so far. When applied to protein class prediction, the 

network maintains information about all residues in the sequence. This is akin to sentiment 

analysis in natural language processing48. To achieve this, we tokenize protein sequences 

at residue level by representing each residue with a “word” composed of their residue-level 

predictions. For instance, a residue predicted to be helix-forming (H), membrane associated 

(M), lipid facing (L), and going toward the cytoplasmic side (D) would be represented by the 

word “HMLD”, and a strand-forming (E) residue in a soluble protein would be represented 

by the word “Esss”. As shown in Table 1, the LSTM model achieved a notable four-class 

classification accuracy of 98.6%. Specifically, it correctly classified all bitopic, TM-alpha, 

and soluble proteins. The only mis-classified protein in the held-out test set is the pore-

forming TM-beta subunit 7ahlA, which has a predominantly large soluble domain (95.9% 

of all residues are outside the membrane). Our results suggest a remarkable effectiveness of 

LSTM neural networks in predicting protein classes by learning from predicted residue-level 

attributes that are combined in a residue-wise manner.

MASSP achieves state-of-the-art performance

We evaluated the performance of MASSP relative to other methods in the field using 

the same test set. We first compared it to Jufo9D, which was previously developed in 

our group54, and five other popular secondary structure prediction methods (PSIPRED11, 

RaptorX-Property55, SPINE-X56,57, NetSurfP-2.058, and TMP-SS34). MASSP performs 

comparably or better than all secondary structure prediction methods evaluated in this work 

(Figure 4). Specifically, MASSP achieved a median Q3 of 0.845, which is comparable to the 

best method NetSurfP-2.0 (0.850), but substantially better than PSIPRED (0.829), SPINE-X 

(0.819), RaptorX-Property (0.750), TMP-SS (0.821). Our previous method Jufo9D achieved 

a moderate median Q3 of 0.766. We note that due to the unavailability of NetSurfP-2.0 

training set, we were not able to check if any proteins used to train NetSurfP-2.0 was in 

our test set (No downloadable training data at https://services.healthtech.dtu.dk/service.php?

NetSurfP-2.0, last accessed April. 13th 2021). We also compared these methods in terms 

of the SOV metric. With a median SOV of 0.792, MASSP is ranked the best among all 
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evaluated methods and is substantially better than TMP-SS (0.768) and NetSurfP-2.0 (0.729) 

whose SOVs are ranked next. PSIPRED (0.690) and SPINE-X (0.705) performed similarly 

in both evaluations, while RaptorX-Property (0.651) was significantly worse. Our evaluation 

also indicates that Jufo9D has the lowest SOVs.

We then compared the performance of MASSP with six other commonly used methods 

(JUFO9D54, MEMSAT330, OCTOPUS31, TMHMM259, TMP-SS34, and TOPCONS260) in 

predicting transmembrane segments and topology for TM-alpha and bitopic proteins (Tables 

2 and 3). Our comparison shows that MASSP has the best performance in predicting the 

number and location of TMHs. MASSP correctly identified 151 out of all 154 TMHs that 

are at least 10 residues long, ~9% higher than the MEMSAT3 and OCTOPUS, which are the 

second best. For topology prediction, OCTOPUS performs the best both at the protein level 

and residue level for both TM-alpha and bitopic proteins. OCTOPUS only mis-predicted the 

topology of 1 bitopic protein, whereas MASSP mis-predicted the topology of 1 TM-alpha 

and 2 bitopic proteins. At the residue level, MASSP attained a Q3 of 0.871 and SOV of 

0.850 for TM-alpha proteins, which are comparable to OCTOPUS (Q3: 0.874, SOV: 0.861). 

However, MASSP’s residue-level performance is substantially lower than OCTOPUS for 

bitopic proteins, due to its worse prediction of protein-level topology.

We next compared the performance of MASSP in predicting TM strands of TM-beta 

proteins with Jufo9D54, BOCTOPUS232, and PRED-TMBB233. The latter two methods 

were recently developed methods and were shown to have improved performance over 

previous methods. As shown in Table 4, MASSP achieved the highest accuracy (Q3: 0.775, 

SOV: 0.775) in residue-level topology prediction and in predicting the number and location 

of TM strands (98 out of 104 TM strands that have at least 5 residues). BOCTOPUS2 

correctly predicted the highest number of protein-level topology (6 out of the 8 TM-beta 

proteins in the held-out test set) and achieved the same level of accuracy as MASSP in 

predicting the number and location of TM strands. However, the residue-level accuracy of 

BOCTOPUS2 (Q3: 0.696, SOV: 0.745) is substantially worse than MASSP.

In summary, our extensive comparison on secondary structure and membrane association/

topology prediction tasks demonstrates that MASSP performance is comparable to or better 

than state-of-the-art methods, while being more versatile and applicable to any protein 

sequences.

Examples of accurate MASSP predictions

We demonstrate the predictions made by MASSP on two proteins by mapping secondary 

structures and topologies predicted by MASSP onto tertiary structures (Fig. 5). We selected 

the subunit B from the caa3-type cytochrome oxidases from Thermus thermophilus (PDB 

ID: 2yevB) and the TamA protein from the E. coli (PDB ID: 4c00A) as two representative 

examples, because they both consist of large transmembrane and soluble domains and all 

three types of secondary structures are also well represented. The subunit B from the caa3-

type cytochrome oxidases consists of an alpha-helical TM domain and a large extracellular 

soluble domain, resolved at a resolution of 2.4 Å. TamA is an E. coli Omp85 protein 

involved in autotransporter biogenesis. It comprises a 16-stranded transmembrane β-barrel 

and three cytoplasmic POTRA domains, resolved at a resolution of 2.3 Å. For 2yevB, 
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MASSP achieved a Q3 of 0.936 and a SOV of 0.893 for secondary structure prediction, and 

Q3 of 0.984 and a SOV of 0.977 for topology prediction. For 4c00A, MASSP achieved a 

Q3 of 0.815 and a SOV of 0.780 for secondary structure prediction, and Q3 of 0.938 and a 

SOV of 0.911 for topology prediction. These two examples illustrate that even for proteins 

composed of mixed large transmembrane and soluble domains, MASSP can accurately 

predict both secondary structures and transmembrane topologies.

Discussion

Prediction of secondary structures and transmembrane regions are fundamental problems 

in bioinformatics with broad downstream applications. Decades of research into these 

problems have produced dozens of methods that can be broadly categorized into knowledge-

based analyses, generative probabilistic modeling, and discriminative machine learning. 

However, methods with better performance are still needed giving the increasingly large gap 

between the set of known sequences and known structures5,22. Among machine-learning 

methods, those mainly based on neural networks, have been shown to generally perform 

best, with Q3 accuracies for secondary structure prediction around 80%5; however, their 

accuracies in predicting transmembrane segments and topologies have been low22. A newly 

sequenced protein can be of any one of the structural classes of soluble, bitopic, TM-alpha, 

or TM-beta. Thus, methods are needed for simultaneous prediction of secondary structures, 

transmembrane regions, topologies, and protein class.

In this work, we introduced MASSP, a multi-task deep-learning framework designed for 

simultaneous prediction of secondary structures, transmembrane regions, topologies, and 

protein classes. MASSP simultaneously predicts residue-level structural attributes for all 

four classes of proteins. The core algorithm behind MASSP is a two-tier deep neural 

network. Our framework is conceptually similar to several recent works that reported 

substantially improved performances in predicting signal peptides61, protein subcellular 

localization62, the topology of TM-alpha proteins35. The first tier is a multi-layer multi-

task 2D-CNN that predicts residue-level 1D structural attributes. The second tier is a 

LSTM neural network that treats the predictions of the first tier from the perspective of 

natural language and predicts the protein class of the input amino acid sequence. We 

demonstrated that MASSP accurately predicts residue-level secondary structures, locations, 

orientations, and residue topologies, and protein-level structural classes. We also show that 

the performance of MASSP is comparable or better than several widely used methods for 

secondary structure and membrane topology prediction.

In addition to performance that is better than or comparable to existing methods, the MASSP 

framework has several other important strengths. First, the multi-tasking nature of MASSP 

makes it a versatile tool that simultaneously predicts residue-level 1D structural features. 

Specifically, the multi-output architecture of the 2D-CNN would allow us to easily extend 

MASSP to predict other structural properties, such as solvent accessibility and contact order, 

from amino acid sequence without the requirement of training a different network for each 

target property. Second, the fact that MASSP does not make a priori assumptions about 

whether the given amino acid sequence represents a TM-alpha protein, TM-beta protein, or a 

soluble protein gives the user a one-stop shop where the secondary structures and membrane 
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associations of a given amino acid sequence of any protein class can be predicted. Thus, 

MASSP could be applied to wholly sequenced proteomes of an organism to predict the 

protein class composition of the proteome as well as residue-level secondary structures and 

membrane associations.

Despite half-a-century of research into the problems of secondary structure prediction and 

transmembrane segment and topology prediction, these problems are still open and the 

field seems to have reached a bottleneck where improvement in prediction accuracy is 

small and progress is slow5. It strikes us as remarkable that the approach that we took 

in developing MASSP, i.e. learning patterns in PSSMs with deep 2D-CNNs, achieved 

comparable or better performance than previously developed, more sophisticated methods. 

This can be partially attributed to applying the “right” type of neural network to the “right” 

representation of input features, i.e. we leveraged the image-processing power inherent in 

2D-CNNs and the fact that PSSMs can be thought of images with real-valued “pixels”. 

Recent advances in protein tertiary structure prediction also demonstrated that a boost 

in performance can be achieved by developing novel neural network architectures that 

leverage the problem’s fundamental mathematical essence4,63–65. For example, AlphaFold, 

the algorithm that outperformed all entrants in CASP13, relies on the fundamental principle 

of the interconvertibility of probability and energy, and predicts the probability distributions 

of residue pair distances and converts distance distributions to energy landscapes4,64. In 

the recent CASP14 competition, AlphaFold2, which is based on an attention-based neural 

network system, trained end-to-end, that attempts to interpret protein structures as “spatial 

graphs”, outperformed all its competitors with an unprecedented margin2,66. These advances 

in tertiary structure prediction together with our work here suggest that completely solving 

these problems will likely require the development novel neural network architectures and 

representation of input features.
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Figure 1. Design of the MASSP framework.
MASSP is a hierarchical prediction system with two predictors. The first predictor is 

a multi-layer 2D convolutional neural network-based (2D-CNN) residue-level classifier 

trained to predict structural attributes of each residue in the input protein sequence (A and 

B). MASSP predicts four categories of residue-level attributes, namely secondary structure 

types (helix, strand, or coil, indicated by H, E, or C), location (membrane or solution, 

indicated by M or s), orientation (lipid-, pore-facing, or soluble indicated by L, P, or s), 

and transmembrane topology (up, down, or soluble indicated by U, D, or s). The second 

predictor is a long short-term memory (LSTM) recurrent neural network-based sequence-

level classifier trained to predict the protein class (bitopic, TM-alpha, TM-beta, soluble) of 

the input amino acid sequence (C). As input to this LSTM, we create a four-letter token 

by collapsing residue-level predictions made by the 2D-CNN for each residue. Thus, for a 

protein sequence that has l residues, the input to the LSTM will be l four-letter tokens.
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Figure 2. Residue secondary structures and topologies are evenly partitioned across protein types 
for training and evaluation.
(A) The distribution of secondary structure types among training, validation, and test sets 

for all four protein classes. (B) The distribution of residue topology types among training, 

validation, and test sets for three protein classes. The distribution for soluble proteins is 

omitted because the topology types of all soluble protein residues are labeled as “s”.
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Figure 3. Performance of MASSP on predicting structural features as tested using a held-out test 
set.
(A) Overall accuracy achieved by MASSP for each target attribute. (B) Overall accuracy for 

each target attribute decomposed according to protein class. (C) Distribution of prediction 

accuracy for each target attribute on test set proteins. (D) Distribution of SOV metric for 

each target attribute on test set proteins.
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Figure 4. MASSP predicts secondary structure accurately.
(A) Distribution of Q3 secondary structure accuracies of MASSP on the test set compared 

to six other representative methods. (B) Distribution of performance at secondary structure 

prediction in terms of the SOV metric for MASSP and six other representative methods.
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Figure 5. Examples of accurate secondary structure and transmembrane topology prediction by 
MASSP.
(A) Comparisons of experimental and predicted secondary structures mapped to tertiary 

structures for cytochrome C oxidase subunit 2 (PDB: 2yevB) and translocation and assembly 

module subunit TamA (PDB: 4c00A) illustrating high accuracy. (B) Comparisons of 

experimental and predicted residue topologies mapped to tertiary structure for the same 

proteins.
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Table 1.

Summary of the performance of the LSTM-based protein class predictor.

Bitopic TM-alpha TM-beta Soluble

Bitopic 5 0 0 0

TM-alpha 0 23 0 0

TM-beta 0 0 7 1

Soluble 0 0 0 37

Row headers indicate true protein classes; column headers indicate predicted protein classes; numbers in the matrices are protein counts.
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Table 2.

Comparison on the performance of TMH and topology prediction for TM-alpha proteins (23 proteins in total).

Method Correct #TMH Correct topology Q3 SOV

Jufo9D 131 / 149 (87.9%) NA NA NA

MASSP 146 / 149 (98.0%) 22 / 23 (95.6%) 0.871 0.850

MEMSAT3 134 / 149 (89.9%) 20 / 23 (87.0%) 0.851 0.813

OCTOPUS 134 / 149 (89.9%) 23 / 23 (100%) 0.874 0.861

TMHMM2 129 / 149 (86.6%) 16 / 23 (69.7%) 0.790 0.772

TMP-SS 130 / 138 (94.2%) NA NA NA

TOPCONS2 130 / 149 (87.2%) 20 / 23 (87.0%) 0.830 0.801

NA: not available, Jufo9D and TMP-SS do not predict residue-level three-state topology. A predicted TMH is considered correct if it overlaps with 
the true TMH for at least 10 residues. Our local run of TMP-SS was not successful for 3dh4A, hence the total number of TMHs is 138.
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Table 3.

Comparison on the performance of TMH and topology prediction for bitopic transmembrane proteins (5 

proteins in total).

Method Correct #TMH Correct topology Q3 SOV

Jufo9D 4 / 5 NA NA NA

MASSP 5 / 5 3 / 5 0.551 0.531

MEMSAT3 4 / 5 4 / 5 0.831 0.819

OCTOPUS 4 / 5 4 / 5 0.865 0.869

TMHMM2 4 / 5 3 / 5 0.629 0.630

TMP-SS 5 / 5 NA NA NA

TOPCONS2 3 / 5 4 / 5 0.589 0.584

NA: not available, Jufo9D and TMP-SS do not predict residue-level three-state topology. A predicted TMH is considered correct if it overlaps with 
the true TMH for at least 10 residues.
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Table 4.

Comparison on the performance of TMS and topology prediction for TM-beta proteins (8 proteins int total).

Method Correct #TMS Correct topology Q3 SOV

Jufo9D 82 / 104 (78.8%) NA NA NA

MASSP 98 / 104 (94.1%) 5 (64.3%) 0.775 0.775

BOCTOPUS2 98 / 104 (94.1%) 6 (75.0%) 0.696 0.745

PRED-TMBB2 85 / 104 (81.7%) 5 (64.3%) 0.714 0.716

NA: not available, Jufo9D does not predict residue-level three-state topology. A predicted TMS is considered correct if it overlaps with the true 
TMS for at least 5 residues.
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