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Abstract

Germline disease-causing variants are generally more spatially clustered in protein
3-dimensional structures than benign variants. Motivated by this tendency, we develop
a fast and powerful protein-structure-based scan (PSCAN) approach for evaluating
gene-level associations with complex disease and detecting signal variants. We validate
PSCAN’s performance on synthetic data and two real data sets for lipid traits and
Alzheimer’s disease. Our results demonstrate that PSCAN performs competitively with
existing gene-level tests while increasing power and identifying more specific signal
variant sets. Furthermore, PSCAN enables generation of hypotheses about the
molecular basis for the associations in the context of protein structures and functional
domains.

Keywords: Gene-level association tests, Protein 3D structures, Spatial scan approach,
Risk variant detection

Background
Many whole exome or whole genome sequencing association studies, such as the National
Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine Program (NHLBI
TOPMed) and the National Human Genome Research Institute Genome Sequencing
Program (NHGRI GSP), seek to identify genes and variants that influence human com-
plex diseases and traits [1–3]. The majority of genetic variants in the human genome are
rare [4], and variants in protein-coding regions have even lower minor allele frequen-
cies (MAFs) [5, 6]. To increase power to detect gene-level associations, set-based analyses
that aggregate variants across sites within a gene are commonly employed. In particu-
lar, burden tests [7–10] for testing the mean of the genetic effects and SNP-set kernel
association tests (SKAT) [11–13] for testing the variance of the effects are widely used
set-based approaches. Burden tests are more powerful when the association effects are
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similar across the aggregated variants, while SKAT is more powerful when the effects
are in opposite directions or the number of causal variants is small relative to neutral
variants [14].
Despite the popularity of these gene-level association tests, their power is limited by

the high background rate of neutral variants, even in causal genes. To address this issue,
one approach is to only consider variants that are likely to be causal based on their
functional annotations. For example, it is a common practice to include only loss-of-
function variants or variants with high functional effect predictions from algorithms such
as PolyPhen2 [15] and SIFT [16]. However, these scores have only modest accuracy, and
scores from different tools often disagree [17]. In addition, most functional annotations
are not phenotype-specific, further limiting their effectiveness in filtering neutral variants
from association analysis.
An alternative approach to address the challenge posed by the high background rate of

neutral variants is based on the assumption that disease-causing variants tend to clus-
ter in specific regions of a gene or chromosome. Indeed, studies have reported clustering
of disease mutations for several Mendelian and complex diseases [18–22]. For example,
variants in gene LRP2 associated with autism spectrum disorder cluster mostly in a 25 kb
region of the gene [22] . As a result, scan tests provide an attractive framework to search
for clustered association signals in a certain genetic region [22–24]. In scan tests, a win-
dow of fixed size ismoved along the length of the region, a test statistic is computed for the
variants within each window, and the window with the strongest evidence of association
is identified as the signal cluster.
For protein-coding variants, current scan tests ignore the functional context of the vari-

ants – 3D protein structure. Within protein structures, variants that are distant along
the genome may be nearby in 3D protein space due to the process of protein folding.
Clustering of tumor-derived somatic mutations has been reported in many proteins, and
the identified clusters often overlap known functional regions of oncogenes and tumor
suppressors [25–30]. Germline mutations also display non-random spatial patterns. For
example, protein-protein interaction interfaces are enriched for disease-causing germline
missense variants, but depleted for neutral missense variants [31]. A recent systematic
investigation of the spatial distribution of genetic variants in human protein structures
concluded that germline disease-causing missense variants are generally clustered in
protein structures, whereas neutral variants exhibit a trend toward spatial dispersion [32].
In this paper, we develop PSCAN, a scan test approach that leverages the tendency of

functional variants to cluster in 3D protein space. PSCAN enables us to powerfully dis-
cover disease-associated genes and identify potentially causal variants. As it is generally
unknown a priori how functional variants may cluster in 3D space, our method is built
upon the flexibly shaped spatial scan framework, with scan windows adaptively defined to
accommodate diverse topologies of variant positions in protein space. Within each scan
window, we conduct set-based tests of the mean or variance of the genetic effects. The
p-values from set-based analysis across windows are then combined to generate a global
p-value for evaluating the gene-level association. Furthermore, we devise and implement
a search algorithm for detecting non-overlapping signal windows/regions in the gene
that exhibit significant associations. The variants within the regions are referred to as
signal variants, and they highlight important protein domains with potential biological
functions contributing to the particular trait of interest.
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Results from simulation studies and application to two real data sets suggest that
PSCAN provides improved power for identifying disease-associated genes and signal
variants. In particular, the PSCAN tests are substantially more powerful than existing
gene-level tests in the presence of signal clusters in protein space, and they maintain sim-
ilar performance in the absence of signal clusters. When applied to real data, PSCAN
identifies signal variants in relevant functional protein domains, which provides valuable
insights into the underlying biological mechanisms of the disease. In addition, PSCAN
only requires variant-level summary statistics and is computationally efficient, which
make it desirable for practical use.

Results
Mapping variants into 3D protein space

To obtain 3D coordinates of genetic variants in protein space, we first consider experi-
mentally determined protein structures. If no experimental structure is available, we then
consider computationally predicted structures. We extract 3D coordinates for all single
chain entries in the asymmetric units of all human protein structures in the Protein Data-
bank (PDB, http://www.rcsb.org/) [33]. For all structures, alternative atom positions are
not included. Structure files with multiple models, e.g., from nuclear magnetic resonance
spectroscopy, are represented by the first reported model. Because of the dynamic nature
of proteins and difficulties in elucidating structures of larger proteins, some regions of
proteins may be missing in available structural models or broken up into fragments across
multiple models. When structural information for a particular protein is incomplete,
variants that are not mapped to residues with structural information have missing coordi-
nates. In the case of multiple structures representing different parts of a protein, it is not
always possible to reliably combine the fragments into a single model on a proteome-wide
scale. In the next section, we describe how we handle unmapped variants and multiple
structures in defining scan windows.
Because experimentally determined structures are available for only approximately

30% of the human proteome [32], we include computationally derived models generated
by the Modbase pipeline [34]. These 3D models are predicted using coordinates from
experimentally determined structures of proteins closely related to the protein modeled.
Considering computationally derived structures more than doubles the number of human
proteins with 3D structural information. In our applications to real data, over 80% of the
genes have structural models for at least part of their sequences. We demonstrate in the
section “Application to the NHLBI exome sequencing project data” that computational
structures are sufficiently accurate to guide our scan tests.
For experimentally determined structural models, all non-synonymous variants of

interest are mapped to protein structures using the previously described PDBMap
method [32]. In brief, this pipeline maps genetic variants into the mRNA transcripts they
influence, then into the resulting protein sequences, and ultimately into available protein
3D structures. It first annotates the transcript-level impacts of coding variants using v82
of the Ensembl Variant Effect Predictor (GRCh37.24) [35]. These transcript sequences
are then linked to the corresponding protein sequences from the Uniprot database [36].
Finally, these protein sequence variants are mapped to positions in protein 3D structures
through SIFTS (Structure Integration with Function, Taxonomy and Sequence) align-
ments [37]. Synonymous variants could also be considered by mapping them to their

http://www.rcsb.org/
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positions in structure, but since they are less likely to be causal than non-synonymous
variants, we do not consider them here. Computationally predicted 3D structures from
Modbase are generated directly from transcript sequences, so no alignment is necessary
to translate protein sequences to Modbase model coordinates.

Defining flexibly shaped windows in 3D protein space

To perform scan tests in a 1D setting, such as along a chromosome, a window [ t, t + w]
of fixed size w is moved along the chromosome to define the potential cluster regions.
Among all possible values of t and w, the one that produces the largest test statistic
is recorded and compared to its distribution under the null hypothesis to assess the
significance of association.
In 3D protein space, there are many possible approaches to defining the “window”. For

example, a window can be defined as a subset of variants in a spherical [38, 39], rectan-
gular [40], or elliptical [41] region with a predetermined angle. The major problem with
such window definitions in our application is that they have a prespecified shape, while
our potential disease-associated clusters may have diverse and complex shapes depend-
ing on 3D protein folding. Another challenge in traditional scan tests is that the number
of windows is usually very large considering various locations and sizes of the shapes,
which makes the scan test computationally intensive and subject to high penalty for
multiple-testing correction.
To overcome these limitations, new spatial scan tests have been developed to allow

signal regions to have flexible shapes [42–44]. In light of thesemethods, we propose a scan
approach that can adapt to the topology of variant locations in protein space. Specifically,
let C1, . . . ,Cm denote the 3D coordinates of variants in the protein. For a fixed window
size w > 0, we define a graph G(w) with edges {(i, j) : dij ≤ w, 1 ≤ i ≤ m, i ≤ j ≤
m}, where dij denotes the Euclidean distance between locations Ci and Cj. In this graph,
the variants i and j are connected if their Euclidean distance is less than w. We say two
variants are in the same window if a path exists between the two variants in graph G(w).
By changing size w, a series of graphs and associated windows are generated. Even though
w can take an infinite number of values, the number of possible graphs is limited because
the graph G(w) remains the same when w is between two consecutive values in the sorted
list of pairwise distances dij’s. Moreover, although new edges will be added to the graph
G(w) when w reaches the next dij, the set of connected components (i.e., windows) of the
graph may remain the same. Hence, the number of possible windows considered in the
scan procedure is small.
In Fig. 1, we provide a simple example in 2D space to illustrate the window

definition. Suppose we have 12 variants coded by numbers 1 to 12. Although
there are 66 pairwise distances, there are only 12 graphs that give different win-
dows. From these graphs, we can derive 23 possible windows: {1}, {2}, {3}, {4},
{5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {7, 8}, {4, 6}, {9, 10}, {2, 3}, {7, 8, 11}, {4, 5, 6},
{2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7, 8, 11}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The window formation can be visualized using a tree dia-
gram in Fig. 2. Given m variants, this procedure generates 2 × m − 1 possible windows
(represented by nodes on the tree in Fig. 2). This number is substantially smaller than that
in traditional spatial scan approaches. In Additional file 1: Figure S1, we demonstrate the
definition of windows in the traditional spherical-region scan approach [38, 39] using the
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Fig. 1 Example of window definition in 2D space. Each subfigure corresponds to a unique graph generated
in the scan procedure. Windows are defined from the connected components in each graph. The newly
introduced window(s) from each graph are listed in the title. In PSCAN, the coordinates are determined by
the locations of variants in 3D protein space

same example. This approach produces 87 spherical windows, and the window definition
would change if a different shape were adopted.
Our scan approach can detect irregular shaped clusters, whereas the traditional

approaches use windows of fixed shape to capture the potential clusters. In Additional
file 1: Figure S2, we show another example using variant coordinates on a fragment of

Fig. 2 Tree representation of window formation. Each node in the tree represent a window. The terminal
nodes are individual variants. The windows with gray nodes are omitted because of low cumulative minor
allele counts. The other windows are colored red that reflect the magnitudes of the set-based test p-values
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the protein SORL1. In this example, our scan approach produces a window that contains
several variants clustering in a banded region. This illustrates how scan windows in our
approach are adaptively defined to accommodate diverse topologies of variant clusters in
protein space.
As described in the previous section, a protein may have missing structural models

for some regions and multiple structural models that cover different regions but cannot
be reliably combined. In our scan method, we define a window set for each structure
separately, create an additional window to include unmapped variants (i.e., variants in the
regions missing structural models), and finally generate a global window by merging all
the windows.

Set-based tests in each window

Once the windows are defined, we test the association of variants in each window to the
disease. Many set-based association tests have been proposed to aggregate variants in a
certain region. In particular, burden tests create burden scores by collapsing the variants
and then testing the mean effects of the burden scores. Burden tests have good power
if the aggregated variants have similar effects. On the other hand, if some variants have
positive effects and others have negative effects and/or if there are many neutral vari-
ants, aggregating variants can diminish association signals. In this scenario, testing the
variance of the effects, as in SKAT, is more powerful than testing the mean. In light of
these existing set-based association tests, we develop two tests in the PSCAN framework:
PSCAN-M for testing the mean and PSCAN-V for testing the variance. These tests can
be performed by using single-variant score statistics that are often available in public por-
tals. Compared to methods that require pooling individual level data, methods based on
summary statistics are more broadly applicable, better protect study participant privacy,
and offer computational advantages. The details of performing burden and SKAT tests
using variant-level summary statistics are provided in Methods. The analytic p-values of
set-based tests are inaccurate if the tests involve too few minor alleles. Therefore, we do
not consider windows that contain less than 10 cumulative minor alleles.

PSCAN gene-level association tests

The goal of PSCAN is to detect if genetic variation in a gene is associated with the trait
of interest (i.e., testing the gene-level null hypothesis), and if so, to identify the signal
region(s) driving the association. We focus on testing the gene-level null hypothesis in
this section and identifying signal regions in the next section.
The scan method searches every window and chooses the window that provides the

strongest evidence of association. We let W = {Wj}rj=1 denote the set of all the possi-
ble windows defined in protein space. The natural choice of scan statistic for gene-level
association test is the minimum set-based p-value across all windows

Qmin = min
Wj∈W

p(QWj), (1)

where p(QWj) is the p-value of the set-based test statistic QWj in window Wj. The QWj is
the mean test statistic in PSCAN-M or the variance test statistic in PSCAN-V. Since many
windows overlap with each other,QWj ’s are strongly correlated, and the exact distribution
ofQmin is hard to derive. To assess the significance of aminimum p-value scan statistic, we
construct its empirical null distribution using Monte Carlo simulation (Methods). While
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simulation-based approaches can be used to incorporate the correlations and evaluate the
significance of the minimum p-value test, they are computationally expensive, especially
for the significance level required when testing all genes in the human genome.
To address this challenge in our genome-wide applications, we use the Cauchy

method [45] to combine multiple set-based p-values across windows. Similar to the min-
imum p-value method, the Cauchy method focuses on the few smallest p-values. The
advantage of Cauchy method over the minimum p-value method is that the Cauchy p-
value combination does not require accounting for the correlation of the individual tests.
In particular, the Cauchy method defines the test statistic as

Qcauchy =
∑

Wj∈W
tan

{[
0.5 − p(QWj)

]
π

}
/|W |, (2)

where |W | is the total number of windows. The p-value of Qcauchy can be accurately
approximated by 1

2 − arctan(Qcauchy)
π

. The Cauchy method has recently been adopted in
association analysis to combine different rare variant association tests and has been
shown to have superior performance over the minimum p-value method in genome-wide
association studies [46].

PSCAN search algorithm for signal regions

Given a disease-associated gene, it is important to further pinpoint potentially causal
variants in the gene. Partitioning protein space using windows allows us to identify local
signal regions in a meaningful biological context. In the signal detection stage, we usually
analyze only the handful of known disease-associated genes, so we do not need as strict
a control on the nominal type I error as in the genome-wide association study. There-
fore, it is feasible to adopt the minimum p-value scan statistic (1) and use Monte Carlo
simulation to obtain the significance threshold (Methods).
We summarize the PSCAN procedure for identifying signal regions in Algorithm 1 in

Methods. In particular, we first pick candidate signal regions as windows with set-based
test p-values less than the significance threshold. Among the candidate signal regions, we
use an iterative algorithm to identify multiple non-overlapping regions. In each round,
we select a region that has the smallest p-value among all the candidate regions and
remove regions that overlap with the selected region from the pool of candidates. In Fig. 2,
suppose that we have candidate sets {4, 6}, {4, 6, 5}, {7, 8}, {7, 8, 11}, {2, 3, 4, 5, 6, 7, 8, 11}
that pass the significance threshold, among which {7, 8, 11} has the smallest p-value. The
algorithm will pick {7, 8, 11} as a signal region in the first round and remove {7, 8} and
{2, 3, 4, 5, 6, 7, 8, 11} because they overlap with {7, 8, 11}. Among the remaining candidates,
suppose {4, 6} has smaller p-value than {4, 6, 5}. The algorithm will pick {4, 6} as another
signal region in the second round, remove {4, 6, 5}, and end the search.
In the setting of scan methods in 1D, this signal detection approach can achieve asymp-

totic optimality [24, 47] (i.e., in reliably separating the true signal region from noise) when
signals are sufficiently strong and signal regions are well separated. However, an alter-
native signal region identification approach has been developed to deal with situation
where signals are relatively weak and/or signal regions are possibly nested [48, 49]. This
procedure only removes windows that overlap by more than the pre-specified overlap
fraction f . When f = 1, this algorithm essentially keeps every region passing the signif-
icance threshold as the detected signal regions. In this paper, we focus on evaluating the
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non-overlapping-window search algorithm but our software incorporates the alternative
approach (see Additional file 1: Algorithm S1).

Simulation studies

PSCAN controls type I error and improves power

We carried out extensive simulations to investigate the performance of PSCAN in
gene-level association testing and signal region detection and compare it with existing
methods. Specifically, we compared the power of PSCAN-M and -V with 1D scan tests
SCAN1D-M and -V based on the variant position on the chromosome (Methods), and
standard burden and SKAT tests. The genotype and phenotype simulation strategy is
detailed in Methods. In short, for each simulation, we generated genotypes for 5000
subjects following a European-ancestry demographic model, and simulated variant 3D
locations and genetic effects under a wide range of signal dispersion levels and effect size
distributions. We assessed the type I error rates for PSCAN gene-level association tests
and signal region detection. In association testing, we set the nominal significance level α
at 10−4, 10−5 and 2.5×10−6, and used 50 million replicates to estimate the empirical type
I error rate under the null model; the empirical power was estimated at the significance
level α of 10−6 based on 103 replicates. In signal region detection, we set the nominal
significance level α at 0.05 and 0.01, and used 103 replicates.
The results for type I error rates are shown in Table 1. For testing gene-level associ-

ations, PSCAN-M and -V have properly controlled type I error. The PSCAN-V test is
slightly conservative because the set-based variance test conducted in each window is
conservative in the presence of rare variants [13]. The type I error rate is also protected
in PSCAN-M and -V procedures for detecting signal regions.
To evaluate power, we randomly chose 10% or 50% of variants to be causal to reflect

sparse and dense signals, respectively. In addition, we considered two effect direction
scenarios: (1) unidirectional effects – all causal variants increase the trait value; and (2)
bidirectional effects – half of the causal variants increase the trait value, and the remain-
ing half decrease the trait value. Finally, we considered different spatial dispersion levels
of causal variants. The coordinates for the neutral variants were sampled from a stan-
dard normal distribution. The coordinates for the causal variants were sampled from a
zero-mean normal distribution with standard deviation ρ. We simulated low, medium, or
high dispersion levels by setting ρ = 0.1, 0.25 or 1. Low ρ (low dispersion) places causal
variants in a small region that includes almost no neutral variants, and ρ = 1 (high dis-
persion) makes the causal variants completely mixed with neutral ones. Additional file 1:
Figure S3 shows variant coordinates in 2D for different signal dispersion levels based on
example simulated data sets.

Table 1 Type I error rate of PSCAN gene-level association test and signal region detection

α PSCAN-M PSCAN-V

Gene-level
association
test

10−4 1.0 × 10−4 9.5 × 10−5

10−5 9.9 × 10−6 8.8 × 10−6

2.5 × 10−6 2.4 × 10−6 2.0 × 10−6

Signal region
detection

0.05 0.049 0.048

0.01 0.011 0.009
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Fig. 3 Power comparisons of PSCAN-M, PSCAN-V, SCAN1D-M, SCAN1D-V, burden and SKAT tests. Each bar
represents the empirical power estimated as the proportion of p-values less than 10−6. The left panel assumes
unidirectional genetic effects and the right panel assumes bidirectional effects; the upper panel assumes 10%
of the variants are causal and the lower panel assumes 50% of the variants are causal. For each configuration,
low (ρ = 0.1), medium (ρ = 0.25) and high (ρ = 1) dispersion levels of signal variants are considered

The results under different scenarios are shown in Fig. 3. The PSCAN-M test is more
powerful than PSCAN-V when the effects are unidirectional and the causal variants are
spatially clustered. The PSCAN-V test becomes more powerful than PSCAN-Mwhen the
effects are bidirectional or the causal variants are spatially dispersed. In the sparse sig-
nal setting, PSCAN-M and PSCAN-V are substantially more powerful than all the other
methods, even when causal variants are completely mixed with neutral ones (ρ = 1); the
SCAN1D-M and SCAN1D-V tests are more powerful than their counterparts in burden
and SKAT tests. In the dense signal setting, when the effects are unidirectional, the power
of PSCAN-M and PSCAN-V becomes similar to that of burden test when ρ = 1. SCAN1D
tests are less powerful than the burden test in this scenario (i.e., dense unidirectional sig-
nals evenly spread over the gene region), because they pay high penalty for testing many
windows when the most effective window is the whole gene region. When the effects are
bidirectional, PSCAN-V is much more powerful than the other tests regardless of ρ, and
the power of PSCAN-M is similar to that of SCAN1D-V and SKAT tests.

PSCAN accurately detects simulated signal regions

Next, we evaluated the accuracy of the PSCAN procedure for detecting potentially causal
variants in simulated disease-associated genes from the scenarios described above. We
compared the PSCAN procedure with the SCAN1D and single variant (SV) signal detec-
tion procedures, and quantified the performance of each method using sensitivity and
specificity (Fig. 4). PSCAN-M and PSCAN-V methods outperform their counterparts,
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Fig. 4 Signal detection accuracy comparisons of PSCAN-M, PSCAN-V, SCAN1D-M, SCAN1D-V, and single
variant (SV) analysis. Sensitivity and specificity were calculated to measure the performance of the signal
detection methods at α = 0.05 level. In each measure, the left panel assumes unidirectional genetic effects
and the right panel assumes bidirectional effects; the upper panel assumes 10% of the variants are causal and
the lower panel assumes 50% of the variants are causal. For each configuration, low (ρ = 0.1), medium
(ρ = 0.25) and high (ρ = 1) dispersion levels of signal variants are considered
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SCAN1D-M and SCAN1D-V, in sensitivity and specificity when causal variants are spa-
tially clustered (ρ �= 1) and have similar performance as the 1D tests when causal
variants are completely mixed with neutral ones (ρ = 1). In the setting of bidirectional
effects, PSCAN-V detects more causal variants than PSCAN-M. In the setting of uni-
directional effects, if the signal is dense, PSCAN-M detects more causal variants than
PSCAN-V regardless of ρ; if the signal is sparse, PSCAN-V detects more causal variants
than PSCAN-M when the causal variants tend to disperse (ρ increases). The SV almost
always has the lowest sensitivity across all scenarios. In terms of specificity, PSCAN and
SCAN1D have slightly lower values than SV, especially when the causal variants are spa-
tially dispersed. This is not surprising, because scan methods tend to select regions that
include more causal variants when their cumulative effects are large enough to overcome
the inclusion of some neutral variants.

Application to the NHLBI exome sequencing project data

PSCAN identifiesmore genes associated with lipid traits

We first applied PSCAN to sequencing and trait data from the NHLBI exome sequencing
project (ESP) with the total sample size of 3,665 (Methods). We considered high-density
lipoprotein levels (HDL) and triglycerides (TRIG) traits. All common and rare non-
synonymous variants were included in the analysis and all methods analyzed the same
set of variants. The details on data processing and acquisition of summary statistics are
described in the Methods. Among 15,242 genes, 12,447 (82%) have protein structural
models available for at least part of their sequence. The 3D coordinates for variants in pro-
tein space were derived from experimentally determined structures [33] when available
(34% of the genes), otherwise from computationally predicted structures [34]. For a given
gene, some variants may not have spatial coordinates due to incomplete protein struc-
tural information. Additional file 1: Figure S4 shows the distribution of the percentage of
mapped variants among the 12,447 genes. As described in the section “Defining flexibly
shaped windows in 3D protein space”, we created an additional window to include these
unmapped variants and merged this window with other windows for mapped variants to
form a global window in PSCAN.
We identified genes significantly associated with HDL/TRIG for each test at 5% false

discovery rate. For most identified genes, the PSCAN gene-level tests produced more
significant p-values compared to their burden/SCAN1D-M or SKAT/SCAN1D-V coun-
terparts (Table 2 and Additional file 1: Figure S5). Furthermore, the PSCAN identified a
more specific set of signal variants. The PSCAN p-value quantile-quantile (QQ) plots are
well calibrated and the genomic-control lambda values are close to 1 (Additional file 1:
Figure S5). PSCAN signal regions for most genes contain only a few variants; however,
in NCK1, APOC3 and CYP2C9, nearly all variants are detected as signal variants. As a
result, PSCAN p-values are not always more significant than their burden/SCAN1D-M
and SKAT/SCAN1D-V counterparts for these genes.

PSCAN highlights biologically relevant signal regions in protein structures

To illustrate signal windows detected by PSCAN, Fig. 5 shows the 3D protein struc-
tures, variant locations, PSCAN windows, and the associated p-values for two proteins:
Platelet glycoprotein 4 (CD36) and Phosphoglucomutase-1 (PGM1). CD36 is a multi-
functional transmembrane glycoprotein that acts as a receptor for many ligands and is
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Fig. 5 Spatial locations of significant lipid trait signal variants in CD36 and PGM1, and tree diagrams for the
defined windows and associated p-values. a Two variants in CD36 (Y325*, Y348F; PDB: 5LGD) significantly
associated with HDL are in a signal region that is involved in oxidized low-density lipoproteins binding. These
variants are nearby in protein space, but they are 825 bp apart on the chromosome (hg19.chr7:80300449 and
hg19.chr7:80301274) with two variants between them. b Three variants in PGM1 (Y420H, V525F, M535V; PDB:
6BJ0) significantly associated with TRIG are on the periphery of the C-terminal “domain 4” involved binding
the substrate phosphate, suggesting that they may modulate activity, but not entirely disrupt binding. These
variants are close in protein space, but they are more than 10 kb apart along the chromosome
(hg19.1:64114301, hg19.1:64120111, hg19.1:64125260), with three other variants between them in this
interval. In protein structures (left panel), the purple spheres represent signal variants and cyan spheres
represent non-signal variants. The right panel shows tree diagrams representing the defined windows. The
windows with gray nodes are omitted because their cumulative minor allele counts are less than 10. The
other windows are colored red that reflect the magnitudes of the p-values from testing the mean effects. The
nodes corresponding to signal regions detected by PSCAN-M are marked by purple stars

involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with
lipoproteins and long chain fatty acids. CD36 mutations can cause platelet glycoprotein
IV deficiency [50] and increase risk for coronary heart disease [51]. PSCAN identifies two
variants (Y325* and Y348F) significantly associated with HDL in CD36. These signal vari-
ants highlight a region of the protein that is involved in oxidized low-density lipoproteins
binding and may also indirectly influence interactions with malarial PfEMP1 proteins
[52, 53]. These two variants are adjacent to each other in protein space (Fig. 5a), but they
are 825 bp apart on the chromosome (hg19.chr7:80300449 and hg19.chr7:80301274) with
other two variants between them. As a result, SCAN1D-V identified a large signal window
that includes many more variants than PSCAN-V for CD36, but the p-value associated
with the window has similar level of significance (Additional file 1: Table S1).
PSCAN also identified a TRIG-associated signal region in PGM1 containing three vari-

ants (Y420H, V525F, M535V). PGM1 is an essential glucose processing enzyme that
carries out the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. This
is a central step in many aspects of carbohydrate biosynthesis and metabolism. Mis-
sense variants in PGM1 are known to cause an inborn error of metabolism, called PGM1
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deficiency, that manifests with a wide range of symptoms, including bifid uvula, cleft
palate, and cardiomyopathy [54]. Mutations that cause PGM1 deficiency are found
throughout the structure of PGM1 with specific hotspots in the C-terminal “domain 4”
that binds the phosphate group of the substrate [55, 56]. The three variants in the signal
region identified by PSCAN are all present in domain 4, but are on the periphery, sug-
gesting that they may modulate the active site, but not entirely disrupt binding. It is also
possible that they influence interactions between domain 4 and other proteins, like LDB3.
These variants are nearby in protein space (Fig. 5b), but they are more than 10 kb apart on
the chromosome (hg19.1:64114301, hg19.1:64120111, hg19.1:64125260), with three other
variants between them in this interval. The SCAN1D tests did not identify any significant
signal regions in PGM1.

Computationally predicted structures are sufficiently accurate for PSCAN

In the ESP data analysis, computationally predicted structures were used for 66% of the
genes, since their experimentally determined structures were not available. Thus, it is
essential to evaluate how the use of computationally derived models affects the perfor-
mance of PSCAN tests. To this end, we computed and compared test results for proteins
with both experimental and computational structural models. For direct comparison, we
focused on variants that have valid coordinates in both experimentally and computa-
tionally derived structures. Although the variant coordinates and resolution are different
between experimental and computational structures, our window definition procedure
is likely robust to some uncertainty about variant locations since the tested windows
are the same if the connected components in the series of graphs defined on pairwise
distances remain unchanged. Indeed, in this analysis, on average 95% of the windows
defined using experimentally determined structures were identical using the compu-
tationally predicted structures, supporting the robustness of our approach to realistic
differences in resolution. Additional file 1: Figure S6 shows the comparison of the PSCAN
p-values on experimental and computational structures. The results based on the com-
putationally predicted structures are very similar to those based on the experimentally
determined structures (Pearson correlations of 0.99). However, we note that proteins with
both experimental and computational models may not be representative of all proteins
with computational models. Nonetheless, the strong correlation suggests that computa-
tionally predicted structures often have sufficient resolution for use in PSCAN association
analyses.

Application to the Alzheimer’s disease sequencing project data

To further explore the potential of the PSCAN approach to identify and refine rare vari-
ant associations, we applied PSCAN-M and PSCAN-V to whole exome sequencing data
from 5740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls
of European and Caribbean Hispanic ancestry from the Alzheimer’s Disease Sequencing
Project (ADSP). Following recent work [57], we performed ancestry-stratified association
analysis on missense variants with MAF < 0.05 using common covariates and com-
bined the summary statistics from both populations using a fixed-effect meta-analysis
[14] (Methods).
We identified genes significantly associated with AD for each test at 5% false discov-

ery rate (Table 3 and Additional file 1: Figure S7). PSCAN-M identified BCAM, CBLC,
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CBX3, SORL1, and TREM2. Each of these genes has previously been associated with AD;
however, the type and strength of evidence varies across these genes [57, 58]. In con-
trast, SCAN1D, burden and SKAT tests that did not consider structural information only
identified BCAM, CBLC and TREM2 as associated with AD.
Furthermore, the structure-aware PSCAN tests identified sets of signal variants that

highlight coherent functional sub-regions of the proteins. For example, PSCAN-M iden-
tified an AD signal region of 34 variants (out of a total of 214 considered) in SORL1,
sortilin-related receptor (Fig. 6 and Table 3). SORL1 is a sorting receptor protein involved
in the intracellular trafficking of many peptides with propensity for beta-sheet formation,
including amyloid-beta precursor protein and amyloid-beta itself [59]. SORL1 contains a
ten-bladed beta-propeller domain, called Vps10p, with a large tunnel at the center that
binds peptides and a dynamic 10CC domain that wraps around the propeller (Fig. 6a) [59].
SORL1 has been associated with AD through both genetic and biochemical studies [57].
However, the mechanisms underlying this association are not fully understood, and there
is great interest in prioritizing genetic variants of unknown significance in SORL1 [60].
The variants in the signal region cluster in 3D space in two functional sub-regions of

the SORL1 protein: the peptide binding tunnel and the dynamic 10CC region (Fig. 6a).
SORL1 peptide binding is mediated by two loops (L1 and L2) from different blades
near to the entrance of propeller binding tunnel. The signal region includes variants
in and near the L2 loop on the side of the binding tunnel nearest to the likely loca-
tion of amyloid-beta binding (Fig. 6b). The signal region also contains many variants
in the flexible 10CC domain, in particular in 10CC-b, which exhibits large conforma-
tional change when peptide binding occurs. This suggests that genetic variation in these
sub-domains may modulate binding activity in ways that are functionally relevant to the
development of AD.

Fig. 6 Spatial and chromosome locations of significant Alzheimer’s disease signal variants in SORL1.
PSCAN-M identified an AD signal region of 34 variants (out of a total of 214 considered) in SORL1. a SORL1’s
structure contains a ten-bladed beta-propeller domain with a large tunnel at the center that binds peptides
(PDB: 3WSY), top view (left) and side view (right). SORL1 binding of peptides, including amyloid-beta, is
mediated by the L1 (dark orange) and L2 (green) loops from different blades near to the entrance of propeller
binding tunnel. The dynamic 10CC domain wraps around the propeller upon binding; the 10CC-b region is
colored blue. Signal region variants (purple spheres) cluster in 3D space in two functional sub-regions of
SORL1: one side of the peptide binding tunnel and the 10CC region. Non-signal variants are indicated by
cyan spheres. bMany of the signal variants are in close proximity to the ligand (yellow sticks); the side-chains
of residues in contact with the ligand are shown as sticks. c Positions of the SORL1 variants on the segment of
chromosome 11 for the SORL1 gene. Signal and non-signal variants are in purple and cyan, respectively
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The chromosome positions of the 34 signal variants are listed in Additional file 1: Table
S2 and displayed in Fig. 6c. These variants are scattered across a wide region of over 80
kb on the chromosome (position hg19.chr11:121340744 to hg19.chr11:121421364), with
24 other non-signal variants in the interval. The relative positions of these variants on
a fragment of the protein and the associated PSCAN window are shown in Additional
file 1: Figure S2. These 34 variants form a banded cluster in protein space. This example
illustrates the flexibility of our windowing approach to find 3D signal regions beyond
simple predefined shapes and that reflect biological domains that are not obvious from
the linear sequence context.

Discussion
In this paper, we propose protein-structure-based scan (PSCAN) methods to detect the
existence and the locations of trait-associated signal regions in protein space. Through
extensive simulations, we show that the proposed scan tests properly control the type I
error rate and achieve substantially higher power compared to standard burden and SKAT
tests, as well as 1D scan tests based on chromosome location. We also show that our scan
procedures accurately select true signal regions and estimate their locations in 3D pro-
tein space. Furthermore, our simulation studies demonstrate that the PSCAN-Mmethod
performs better than the PSCAN-V method when the variants in the signal region have
similar effects, while the trend is reversed when the effects are in different directions, or
when causal variants are mixed with a large number of neutral variants in signal regions.
We applied PSCAN to whole exome sequencing data from the NHLBI ESP and the

ADSP. Using protein structural information from experimentally and computationally
derived 3Dmodels, we identified several genes associated with HDL and TRIG levels and
with late onset AD. Comparing the association analysis for PSCAN to burden and SKAT
tests confirms the power of PSCAN to identify additional associations. Analyzing sig-
nal regions in their structural context revealed that the variants identified in these genes
often cluster in functionally relevant regions of protein 3D space, while being distant
along the linear protein sequence. Furthermore, considering the variants’ structural con-
text enabled the generation of hypotheses about the molecular mechanisms underlying
their associations with traits.
Our structurally guided approach for signal region detection is one of PSCAN’s main

innovations. Protein structures provide the functional context for protein-coding genetic
variation. Nonetheless, popular genetic association analysis methods that aggregate vari-
ants focus on the genomic context of variants of interest and do not account for
biologically relevant 3D structural relationships. Thus, as we demonstrate here, the incor-
poration of protein-structure derived information is a powerful addition to commonly
used set-based association tests. However, defining spatial windows for scan tests poses
several challenges, most notably how to allow for flexibly shaped windows without requir-
ing testing of a prohibitively large number of windows. We address this challenge by
adapting a graph-based approach that creates graphs based on distances between vari-
ants and uses the connected components of the graph to define the windows of variants
for testing. Ultimately, the total number of windows considered is only about twice the
number of variants.
We also demonstrate that protein structural information from computationally derived

models is often sufficiently accurate for PSCAN. This is a critical finding, since it
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substantially increases the number of proteins to which PSCAN can be applied. While
only approximately 25% of human proteins have experimentally derived structures, more
than 75% of human proteins have computational models of at least part of their structure
available [32, 34]. As demonstrated by our application to the ESP data, sufficient structural
information is available to enable the broad application of PSCAN.
PSCAN can be further extended in several aspects. (1) The development of a uni-

fied test that combines the PSCAN-M and PSCAN-V to achieve more robust power
across different patterns of genetic effects would simplify their application. (2) Mod-
eling of the uncertainty and flexibility of variant 3D locations in the scan proce-
dure and imputation of the location of the unmapped variants would further expand
and improve the scope of the PSCAN approach. (3) Leveraging additional struc-
tural information beyond the orientation and Euclidean distance between variants
in 3D could also help identify more biologically relevant signal clusters. For exam-
ple, the use of alternative structurally defined distance measures that incorporate
information about residue-level interaction networks could capture the likelihood of
functional interactions between different protein positions. (4) Finally, the application
of PSCAN to structural models of protein-protein interaction interfaces and protein
complexes could identify associations by integrating variants across multiple different
proteins.
With the increasing number of large-scale whole exome/genome sequencing studies,

incorporating external functional information into association analyses is critical to fur-
ther boost discovery power and facilitate biological interpretation of results. In this paper,
we focus on protein-coding variants and use 3D protein structure to detect clusters of
risk variants. Other variant annotations could be readily integrated with structural infor-
mation in our PSCAN framework. For example, variants could be weighted based on
their evolutionary conservation or predicted effect on protein structure and stability.
Integrating functional annotations as variant weights has improved power in traditional
SNP-set tests. For genes with no protein structural data, we suggest using other poten-
tially informative variant annotations. As more information about the 3D structure of
genome becomes available [61, 62], our method is potentially useful for association anal-
yses of non-coding variants by leveraging 3D chromatin structures inferred from HiChIP,
ChIA-PET, and related technologies.

Conclusions
The PSCAN method developed here is a powerful new approach for integrating the
growing amounts of protein structure data into tests for finding and interpreting genetic
associations. Continued development of scan tests for analysis of sequencing data will
enable further novel discoveries of variants and protein regions associated with human
traits and diseases. To facilitate the broad application of this approach, we provide the
PSCAN R package for applying the method to whole exome and genome sequencing data.

Methods
Set-based association tests

Suppose β = (β1, . . . ,βm) are the genetic effects for the m variants in a given gene. We
can obtain variant-level score statistics U = (U1, . . . ,Um) for testing β1 = . . . = βm = 0
and their covariance estimates V via standard regression methods [10, 63–66]. For each
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window Wj, we let βWj denote the subvector of β for the variants contained in that win-
dow, UWj denote the corresponding subvector of U , and VWj denote the corresponding
submatrix of V . We construct the statistic for testing H0 : βWj = 0 in windowWj as

QWj = (STWjUWj)
2/(STWjVWjSWj),

where SWj is a vector that includes the weights for variants in window Wj. If we want to
combine the variant-level statistics by simple summation of each component, then we set
SWj = (1, . . . , 1). If we want to up-weight rare variants, we can calculate SWj according
to the MAFs of variants as described in the Madsen–Browning burden test [8]. Under
the null hypothesis that no variants in the window Wj are associated with the trait, QWj

follows χ2
1 distribution and its p-value can be computed analytically.

Trait-associated variants in a window may have effects in different directions and many
neutral variants may be also present in the window. The mean scan test has low power in
this scenario because the association signal is diluted by aggregating bi-directional effects
and mixing in background noise. For this scenario, we employ the quadratic statistic for
testing the variance. In this variance test, βWj is assumed to be a vector of random vari-
ables sampled from a zero-mean normal distribution with variance τWj . Testing τWj = 0
is equivalent to testing βWj = 0. The variance test statistic takes the form

QWj = UT
Wj�WjUWj .

The�Wj is a diagonal matrix with each diagonal element being the weight for each variant
within windowWj. Following SKAT [13], we set the weight based on the MAF through a
Beta density function Beta(MAF; 1, 25); other weighting schemes can be readily adopted
as well. Under the null hypothesis, QWj follows the mixture χ2

1 distribution
∑mj

k=1 λkχ
2
1,k ,

wheremj is the number of variants in windowWj, λk is the kth eigenvalue ofV
1/2
Wj

�WjV
1/2
Wj

,
and χ2

1,1, . . . ,χ
2
1,mj

are independent χ2
1 random variables. The p-value can be accurately

computed using Davies method [67].

Minimum p-value scan statistic

We use the Cauchy method to combine p-values across windows and assess gene-level
association (Results) because it is computationally fast. Previous research has shown that
the Cauchy method can properly control the type I error regardless of correlations of
individual tests when p-value is small (< 10−4, as in genome-wide association studies)
[45, 46]. However, the Cauchy method can have a slight inflation in the type I error for
large p-values. Therefore, in the candidate gene analysis where only a handful of genes
are tested, usingMonte Carlo simulation to evaluate the significance of minimum p-value
scan statistic is a more robust approach.
To assess the significance of minimum p-value scan statistic, we construct its empirical

null distribution usingMonte Carlo simulation. To be specific, we repeatedly generateU∗

from them-variate normal distribution with mean 0 and covarianceV and recalculate the
minimum p-value scan statistic Q∗

min. These simulated Q∗
min’s are used to construct the

empirical null distribution for the observed scan statistic Qmin. The p-value of the mini-
mum p statistic is the proportion of the simulated Q∗

min’s less than the observed statistic
Qmin.
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PSCAN signal region search algorithm

Suppose we want to control the type I error at α level in the signal region detection. The
PSCAN search algorithm is summarized as follows.

Algorithm 1 Search for signal regions
Define the window setW = {Wj}rj=1 and initialize the estimated signal region set Ŝ = ∅;
Calculate a set-based test p-value p(QWj ) for each window Wj and calculate the scan statistic
Qmin = minWj∈W p(QWj );
Obtain the α-quantile 	(α) of the empirical null distribution ofQmin as significance threshold;
Identify the candidate set B = {B : B ∈ W , p(QB) < 	(α)}
if B �= ∅ then

repeat
Ŝ∗ = argmin

B∈B
p(QB)

Ŝ ← Ŝ ∪ Ŝ∗
B ← {B : B ∈ B,B ∩ Ŝ∗ = ∅}

until B = ∅
else

No signal region detected at α level (Ŝ = ∅)
end if
Report signal region set Ŝ

SCAN1Dmethod

We implemented the 1-dimensional scan (SCAN1D) method based on the variant posi-
tion on the chromosome and compared its performance with PSCAN in gene-level
association testing and signal variant detection. For a given gene with length L, we con-
sider several window sizes: L/2, L/4, L/8, L/12, L/16, and L/20. Windows are formed by
moving the interval of a given size at the skip length of L/40 along the gene region on
the chromosome. Similar to PSCAN, a gene-based test is performed in each window and
gene-level association is evaluated by combining all p-values across windows using the
Cauchy p-value combination method. We refer to the SCAN1D tests of mean and vari-
ance as SCAN1D-M and SCAN1D-V, respectively. The signal region search is conducted
in the same way as PSCAN. Hence, SCAN1D and PSCAN only differ in the window
definition.

Simulation strategy

For all simulations, we generated 10,000 haplotypes of length 100 Mb under a cali-
brated coalescent model to mimic a sample of the European population [68]. We used
these haplotypes to form the genotypes of 5,000 subjects. To simulate the genotypes
for a dataset, we randomly selected a 3 kb region. All variants (including common and
rare) in the region were included in the analysis. The phenotypes under the null were
sampled based on a linear regression model Yi = 0.3Zi + εi, where Zi is a covariate
simulated from a standard normal distribution, and εi is the standard normal error. The
phenotypes under the alternative were sampled based on the linear regression model
Yi = β1Gi1 + . . . + βsGis + 0.3Zi + εi, where Gij’s are genotypes of randomly selected
casual variants and βj’s are the genetic effects for these casual variants. We set the effect
size of the causal variant j to c|log10MAFj| so that low-frequency variants are not domi-
nated by the effects of common variants. To assess the power of the gene-level tests, we
set c = 0.3 when 10% of the variants are causal and c = 0.15 when 50% of the variants are
causal so that the power of the most powerful test is reasonably high at the 10−6 level. To
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assess the accuracy of the signal region detection, we set c = 0.25 when 10% of the vari-
ants are causal and c = 0.1 when 50% of the variants are causal so that the sensitivity of
the most powerful signal detection approach is reasonably high at the 0.05 level. We used
MAF-based variant weights of 1/

√
MAF(1-MAF) in the PSCAN-M and burden tests and

weights of Beta(MAF; 1, 25) in PSCAN-V and SKAT.

NHLBI ESP data and analyses

To demonstrate the utility of PSCAN, we applied the method to analyze data from the
NHLBI ESP [69]. The ESP consists of multiple whole exome sequencing studies, each
of which is focused on a different trait: three studies of subjects with extreme values of
relevant quantitative traits—body mass index, low-density lipoprotein levels, and blood
pressure, one case-control study of myocardial infarction, and one case-only study of
stroke. In addition to these five studies, the deeply phenotyped reference study took mea-
surements of a set of core phenotypes on randomly sampled subjects. We used sequence
and trait data from these six studies. DNA samples were sequenced on the Roche Nim-
bleGen SeqCap EZ or Agilent SureSelect Human All Exon 50 MB at the University of
Washington and the Broad Institute. We adopted the variant calling and quality control
procedures as described in a previous publication [70]. We considered a total of 15,242
genes with cumulative minor allele counts ≥ 10.
After excluding subjects with sex mismatch or relatedness [63], there were 1702 African

American subjects and 1963 European American subjects in our analysis. For each study,
we performed association analysis for the two race groups separately using SCORE-
SeqTDS [63] and obtained the variant-level score statistics and covariance estimates. We
then combined these summary statistics across race groups and studies in a fixed-effects
meta-analysis [14]. In the association model, we adjusted for several covariates including
principal components for ancestry, age, age2, gender, study cohort, and sequencing tar-
gets. As in the simulation studies, we performed PSCAN-M and burden tests with variant
weights of 1/

√
MAF(1 − MAF), and PSCAN-V and SKAT tests with variant weights of

Beta(MAF; 1,25).

ADSP data and analyses

The ADSP study design, variant calling, and variant annotation are described in detail
elsewhere [71–73]. We accessed whole-exome sequencing data on 5,740 late-onset AD
cases and 5,096 cognitively normal controls from the ADSP Discovery phase. For com-
parison to existing approaches, we followed the modeling strategy outlined in Model 0
of Bis et al. [57], which included adjustments for sequencing center and ancestry-based
principal components. We examined missense variants exclusively and did not include
insertion-deletion polymorphisms. Variants were filtered using a MAF < 0.05, and genes
were required to contain more than one variant and have a cumulative minor allele count
≥ 10. A total of 14,818 genes met this criteria, 12,730 (86%) of which has some degree of
protein structural information, with 3,967 (27%) having experimentally-derived protein
structures.

Software implementations and computation time

We have implemented our method in an R package PSCAN. The PSCAN gene-level
association tests do not require numerical simulations to evaluate the significance and
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extremely fast. In the analysis of ESP data, PSCAN takes readily available summary statis-
tics as input and the computation time for testing 15,242 genes is less than 2 h on an IBM
HS22 machine. The signal region detection requires Monte Carlo simulation to generate
the null distribution of minimum p-value scan statistic and the computation time depend
on the number of simulations and the number of variants. In our real data analysis, we
used 5000 simulations in detecting signal regions at α = 0.01 level. The PSCAN-M proce-
dure for signal region detection takes few seconds and runs faster than PSCAN-V because
numerical approximation is needed to obtain the variance test p-value. The PSCAN-V
computation time ranges from 5 s (for APOC3 gene with 7 variants) to 4 min (for CD36
gene with 70 variants).
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