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Structural variants (SVs) contribute to many disorders, yet, functionally annotating them

remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-

mortem brains to quantify their dosage and regulatory effects. We show that genic and

regulatory SVs exist at significantly lower frequencies than intergenic SVs. Functional impact

of copy number variants (CNVs) stems from both the proportion of genic and regulatory

content altered and loss-of-function intolerance of the gene. We train a linear model to

predict expression effects of rare CNVs and use it to annotate regulatory disruption of CNVs

from 14,891 independent genome-sequenced individuals. Pathogenic deletions implicated in

neurodevelopmental disorders show significantly more extreme regulatory disruption scores

and if rank ordered would be prioritized higher than using frequency or length alone. This

work shows the deleteriousness of regulatory SVs, particularly those altering CTCF sites and

provides a simple approach for functionally annotating the regulatory consequences of CNVs.
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Structural variants (SVs) are a common and complex form of
genetic variation that contribute substantially to phenotypic
diversity and disease1–3. This contribution is notable in

brain related disorders and traits such as schizophrenia, autism
spectrum disorder (ASD), and cognition4–8. The advent of short-
read genome sequencing has facilitated SV detection at nucleotide
resolution and enabled a generation of large-scale reference
studies2,9,10. Despite this progress, we still have a limited
understanding of the functional impact of these variants, parti-
cularly for those seen infrequently in populations. Developing
approaches to infer the functional consequences of SVs in the
brain could have a profound impact on interpretation of genetic
risk for complex brain disorders.

RNA-sequencing enables accurate measurement of transcrip-
tion genome-wide11, and can thus facilitate a direct assessment of
functional changes driven by genetic variants, including single
nucleotide variants (SNVs) and SVs12–15. Previous work using
earlier technologies has demonstrated that SVs have profound
effects on expression with estimates of large copy number var-
iants (CNVs) alone explaining 18% of variation in gene expres-
sion in cell lines15. Most work in this area has focused on
common variants for which there is statistical power to identify
direct association of a variant with expression of a gene16.
However, recent analyses have suggested a substantial regulatory
role for rare variants by identifying an enrichment of expression
outliers in individuals harboring such variation17,18. In a small
number of examples, rare SVs have shown the potential to alter
the expression of genes both within and outside the SV locus with
disease relevant phenotypic consequences. Such SVs often alter
the regulatory landscape directly or through positional effects that
change the three-dimensional structure of the genome. For
example, the expression of PLP1 is regulated by a downstream
duplication and is associated with spastic paraplegia type 2 with
axonal neuropathy19. To date, few samples have thus far been
able to leverage both comprehensive SV detection from genome-
sequencing and RNA-sequencing to explore the effects of rare
SVs on expression genome-wide. Despite the importance of rare
SVs in brain-related disorders and the tissue-specific nature of
transcriptional regulation, efforts to understand the functional
consequences of rare SVs in the brain have been impeded by the
challenge in acquiring enough postmortem brain samples to be
well-powered to quantify the dosage and regulatory effects of SVs.

The CommonMind Consortium (CMC; www.synapse.org/
CMC) is a large collection of collaborating brain banks with
over 1000 samples, including many with schizophrenia or bipolar
disorder. Here, we leverage newly generated genome-sequencing
data integrated with RNA-sequencing data from 629 samples that
enable us to directly study the effects of rare SVs on expression in
the brain. We show that SVs affecting regulatory elements are at
significantly lower variant frequencies than expected, suggesting
their potential to be deleterious. We also provide a quantitative
characterization of the effects of SVs altering different regulatory
elements have on expression. These results show that most
complete gene deletions and duplications do not result in
expression outliers and that genic intolerance to variation informs
their functional impact. Finally, we build a model to infer the
expression effects of SVs and use it to calculate a cumulative
measure of regulatory disruption of an SV across all genes. When
applied to a large independent SV reference data set9,20, the
regulatory disruption score improves prioritization of pathogenic
deletions beyond the common practice of considering frequency
and SV length. Altogether, this work advances our understanding
of the transcriptional consequences of SVs in the human brain
and provides a framework for functionally annotating these
variants to aid in disease studies.

Results
Evidence for selection against regulatory SVs. The SV detection
pipeline identified 116,471 high-quality variants across 755
individuals. The final set of SVs predominantly consisted of
CNVs (73%) and mobile element insertions (18%). The vast
majority of SVs were small and rare (Fig. 1). The average length
of SVs in this dataset was 7053 bp (median= 280 bp), with 78%
of variants less than 1 kb. We next identified a subset of rare SVs
(observed in <1% of individuals, AF < 0.5%, all SVs are treated as
heterozygous), representing 88,819 variants. On average, indivi-
duals carried 338.4 rare SVs including 176.6 deletions and 69.3
duplications. These numbers differed by ancestry; individuals
with African ancestries (mean= 615.9 SVs) carried substantially
more rare SVs than individuals with European (mean= 190.5
SVs) or other ancestries, as expected.

We next sought to characterize how frequently SVs putatively
alter gene dosage based on overlap with genes or regulatory
elements. We defined a set of regulatory elements that included
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Fig. 1 Details of CMC SV dataset. Characterization of high confidence rare (<0.5%) SV dataset stratified by a type of SV, b allele frequency, and c length
(log10-scaled) colored by type of SV. SV types, include Alu (Alu), complex (CPX), translocation (CTX), deletion (DEL), duplication (DUP), insertion (INS),
inversion (INV), long interspersed nuclear element-1 (LINE1), SINE-VNTR-Alu (SVA), including short interspersed nuclear elements, variable number
tandem repeat, and Alu.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16736-1

2 NATURE COMMUNICATIONS |         (2020) 11:2990 | https://doi.org/10.1038/s41467-020-16736-1 | www.nature.com/naturecommunications

http://www.synapse.org/CMC
http://www.synapse.org/CMC
www.nature.com/naturecommunications


CTCF sites (n= 100,894), enhancers (n= 79,056) derived
exclusively from brain tissue (see “Methods”) and promoters
(2 kb upstream of the transcription start site [TSS]). Genes were
defined as those in Ensembl v75 (n= 57,773) and where noted we
split protein-coding genes (coding) from others which we label
broadly as other transcribed products. For comparison, we
defined two nonfunctional categories of SVs that did not overlap
any annotation including those falling within introns (intronic)
or those falling outside of any gene (intergenic). We note that
these nonfunctional SV categories will include some proportion
of SVs altering functional elements that were either not included,
or that have not yet been identified, which should make our
comparisons conservative. The allele frequency (AF) of SVs
affecting protein-coding genes (AF= 0.00168, p= 7.42 × 10−15),
enhancers (AF= 0.00123, p= 6.42 × 10−30), and CTCF sites
(AF= 0.00161, p= 1 × 10−16) were significantly lower and
singleton proportions were significantly higher than intergenic
SVs (mean AF= 0.00193, Fig. 2) after matching on SV length to
account for the known relationship between frequency and SV
length (Supplementary Fig. 1, Supplementary Table 1, Wilcoxon
test of AF distributions between the two annotation classes).
These results were consistent across both deletions and duplica-
tions (Supplementary Table 1).

To explore the contributions of different functional elements to
this result, we stratified SVs based on the specific annotations
(e.g., coding and enhancer, Supplementary Fig. 2) to isolate those
that alter combinations of annotations classes and those that
uniquely alter a single annotation class (Supplementary Table 2).
We identified a significant negative correlation between the total
number of annotation classes affected and AF indicating that SVs
with more potential to alter dosage are less likely to be tolerated
(Supplementary Fig. 3). Further, we show that SVs exclusively
affecting CTCF sites (AF= 0.00175, p= 1.48 × 10−4) when
compared to intergenic variation showed comparable frequencies

and significance to SVs that only affected protein-coding genes
(AF= 0.00179, p= 1.48 × 10−5). These results are consistent
across SV type and this difference in AF is seen when performing
the same annotation of the gnomAD SV dataset of ~15 k samples
called from genome-sequencing using the same pipeline9 (Fig. 2).
These results suggest a strong selection against SVs that alter
CTCF sites, consistent with previous work21.

Transcriptional consequences of genic SVs. Among the samples
with genome-sequencing, 629 individuals had RNA-sequencing
data from the dorsal lateral pre-frontal cortex (DLPFC). RNA-
sequencing was done across two cohorts (CMC and
CMC_HBCC), results were consistent across cohorts as shown in
many instances below. To quantify the transcriptional con-
sequences of an SV, we defined expression in two ways. First, we
calculated relative expression as the average expression of carriers
divided by noncarriers. Second, we calculated z-scores using only
noncarriers for calculating the mean and standard deviation to
mitigate the effect of AF. We use both measures throughout,
relying on relative expression in certain cases for interpretation
but preferring z-scores for their statistical properties.

Previous literature has shown heterogeneity of effect on
expression among putative loss-of-function (LoF) variants which
is at least partly due to challenges in annotating functional
impact22,23 Here, we expect complete deletions or duplications of
all exons across all isoforms of a gene to result in an average 50%
decrease or increase in expression, respectively. Relative expres-
sion calculated using read counts per million total reads (CPM)
demonstrated the expected 50% decrease or increase from full
gene deletions or duplications, on average (Supplementary Fig. 4).
Deletions fit this expectation better than duplications, suggesting
more variability among duplication calls and/or their functional
effects. Normalization and linear covariate adjustment, which is
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Fig. 2 Genic and regulatory SVs occur at significantly lower frequencies. Proportion of variants that are seen only a single time with bootstrapped 95%
confidence interval in the sample stratified by overlap with any annotation, allowing for multiple (CMC), only a single annotation (CMC unique) and any
annotation in gnomAD SV.
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necessary to account for confounders and batch effects (see
“Methods”) alters the relative difference in expression among
carriers to be closer to 25% while also reducing the variance,
enabling clear demonstration of expression differences among
individuals carrying full gene deletions or duplications (Supple-
mentary Fig. 4). In general, expression was substantially lower
across the full set of deletions and higher across the full set of
duplications affecting genes (Fig. 3a), and these results were
consistent across RNA-sequencing cohorts (Supplementary
Fig. 5).

While there is an expectation for the expression effect of full
gene deletions and duplications, the effects that other SVs may
have on expression are not obvious. We identified a relationship
between proportion of exonic sequence deleted/duplicated and
expression (Supplementary Fig. 6) where the more exonic
sequence deleted or duplicated the more extreme the expression
difference. Of note, we saw more dramatic effects on expression
for CNVs that altered the transcription start or 5′ end of the gene
compared to transcription end or 3′ end regardless of proportion
of exonic sequence affected (Supplementary Fig. 7). We defined
expression outliers as those with z-scores greater than 2 or less
than −2, and included any gene within 1Mb of an SV assuming

any affected base pair could regulate expression, similar to the
standard window for identifying eQTLs. After Bonferroni
correction for 60 tests (p < 0.00083), we identified significant
excess of positive expression outliers for genic duplications
(13.6%, p= 8 × 10−181, Fisher's exact test) and significant excess
of negative expression outliers for genic deletions (14.2%, p=
3.1 × 10−132) when compared with CNVs of the same type but
not affecting genes (Table 1). These results remained consistent
whether we tested protein-coding genes or other transcribed gene
products. Among the other SV classes with enough genic variants
to be tested, only inversions showed a significant excess of
expression outliers (Fig. 3c). This result was most significant
when considering outliers in both directions (6.8%, p= 2.4 ×
10−5, Table 1), with a larger contribution from positive
expression outliers (4.1%, p= 4.5 × 10−4) than negative expres-
sion outliers (2.7%, p= 1.46 × 10−2). No effects were observed for
insertions or Alu elements (Table 1).

Our data showed an enrichment of expression outliers among
genic SVs. However, we emphasize that the impact of structural
rearrangement on expression is nonuniform and more complex
than a simple accounting of the presence or absence of an SV.
Even in the most extreme cases of 100% deletion or duplication,
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the affected protein-coding gene would only be considered an
expression outlier for 61.7% of gene deletions and 34.1% of gene
duplications (Fig. 3b). Furthermore, across all genic CNVs
affecting protein-coding genes, only 16% of genic deletions and
15.2% of genic duplications result in gene expression outliers.
These results demonstrate that the vast majority of known genic
SVs would not be identified if restricted to expression outliers, so
in contrast to this thresholding approach, a quantitative approach
can more accurately assess the effects that SVs have on gene
expression.

Transcriptional consequences of regulatory SVs. Next, we
quantified the transcriptional consequences of SVs that affect
regulatory elements; this requires determination of a set of genes
to analyze for each element. Our definition of promoters was
necessarily gene-specific; however, for enhancers we explored
numerous approaches concluding that genes predicted to be
targets of enhancers from Hi–C24 was the most interpretable and
useful for downstream analyses. Other approaches that we con-
sidered including the nearest gene, all genes within a shared
topological associating domain (TAD) and all genes within a
1Mb window showed similar results. We therefore included 90,015
enhancer-gene pairs covering 6535 genes and 32,803 enhancers
predicted from PsychENCODEHi–C data24. To capture the relative
contributions of all annotations, we tested the relationship between
gene expression z-scores and SV annotations with a joint linear
model that included proportion of exonic sequence, promoter
proportion, sum proportion of all affected enhancers, whether SV
and gene were within the same TAD and SV length. The most
significant contributor to expression was the proportion of the
exonic sequence affected (deletions: beta=−1.78, p= 9.9 × 10−158;
duplications: beta= 0.78, p= 3 × 10−109). Expression was sig-
nificantly and positively correlated with the proportion of a pro-
moter that was affected by CNVs with deletions leading to lower
expression (beta=−0.17, p= 3.4 × 10−3) and duplications leading
to higher expression (beta= 0.37, p= 2.5 × 10−30). Further,
expression was significantly correlated with the cumulative sum of
enhancer sequence that was affected by an SV only in duplications,
but both deletions and duplications led to decreased expression
(deletions: beta=−0.02, p= 0.067; duplications: beta=−0.02, p=
8.1 × 10−9). The presence of the SV and the gene within the same
TAD contributed significantly and directionally to expression in
deletions (beta=−0.009, p= 5.7 × 10−5) but not duplications
(beta= 0.005, p= 0.21). The effects of these variables on expression
were consistent across cohort (Table 2) and while proportion of
exonic sequence provided the strongest contributor, the effects of
cis-regulatory elements remained significant in duplications and to
a lesser extent in deletions after excluding all genic SVs (Supple-
mentary Table 3).

Integrating transcriptional consequences and gene intolerance.
To better understand the relationship between our variant anno-
tations in the context of the genes affected, we incorporated two
distinct measures of genic intolerance to variation: (1) gene
intolerance to CNVs defined empirically from exome-sequencing
in nearly 60,000 individuals25, and (2) a measure of gene intol-
erance to LoF variation generated from a sample of ~141,000
individuals20. Several significant relationships between the func-
tional effects of SVs and the intolerance of the genes affected
existed. SVs that disrupted intolerant genes were significantly
more likely to alter a smaller proportion of the exonic sequence
(pLoF= 2.42 × 10−38, pCNV= 1.31 × 10−33, Spearman correla-
tion test of intolerance and proportion of exonic sequence affec-
ted, Fig. 4a). Intolerant genes were also significantly less likely to
have a genic SV (pLoF= 2.4 × 10−38, pCNV= 9.36 × 10−34,T
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Wilcoxon test of gene metric by whether SV affects exonic
sequence or not, Fig. 4b). Consistent with previous literature
showing intolerance to dosage changes in either direction25 we
saw intolerant genes less likely to be affected by both deletions
(pLoF= 7.41 × 10−29, pCNV= 3.02 × 10−26) and duplications
(pLoF= 3.81 × 10−22, pCNV= 1.57 × 10−46). Further, when
restricting to SVs that only alter regulatory elements and not
exonic sequence, we identified a significant decrease in the
number of enhancers affected by SVs in genes with higher
intolerance, although this was only observed for the CNV
intolerance metric (pLoF= 0.62, pCNV= 7.23 × 10−22, Fig. 4d).
We did not find any effects from promoter SVs in either metric
(pLoF= 0.35, pCNV= 0.37, Fig. 4c). Combined with the dif-
ferences seen by CNV type these results may indicate unique
properties of these metrics and what they reflect (e.g., hap-
loinsufficiency vs. dosage sensitivity). In general, as with single
nucleotide variation, genic measures of intolerance should help
functionally annotate SVs.

A model to annotate SVs from predicted dosage and gene
intolerance. Having demonstrated a significant role for SVs in
altering expression, we sought to test whether this model could
be used to predict expression effects of SVs in independent
samples. We split our DLPFC sample by cohort (CMC and
CMC_HBCC, see “Methods”) and constructed the linear model
described previously in each subset and then applied that model
to SVs in the other set to infer expression effects. We identified
significant correlation between the true expression value and
the predicted value across all four pairwise comparisons
(R2 CMC_HBCC→CMC= 0.35, R2 CMC→CMC_HBCC= 0.17,
R2 CMC→CMC= 0.36, R2 CMC_HBCC→CMC_HBCC= 0.17, Fig. 5)
with deletions (particularly when tested in CMC) consistently
performing better.

Leveraging this model and the previously used measure of
genic intolerance to LoF variation, we built an aggregate
regulatory disruption score that was the sum of the predicted
expression z-scores for each gene weighted by the gene’s
intolerance metric (normalized between 0 and 1 with 1 being
most intolerant) to annotate SVs. We then applied our model to
annotate 210,244 variants in the gnomAD SV dataset9 after
restricting to CNVs that were below 1% frequency. Of those,
31,492 (15%) were predicted to alter the expression of at least
one protein-coding gene where we had an intolerance metric,
20,236 of these variants were deletions and 11,256 were
duplications. We considered a deletion or duplication in
gnomAD as pathogenic if it overlapped at least 50% of a CNV
of the same type (3454 deletions and 1894 duplications) labeled
pathogenic for neurodevelopmental disorders (developmental
delay, intellectual disability, or autism) in ClinGen (downloaded
from UCSC Genome Browser June 2019). There were 84
deletions and 84 duplications that met this criterion (39 deletions
and 33 duplications overlapped 100% of the pathogenic ClinGen
variant, as gnomAD includes some individuals with neuropsy-
chiatric disorders). This set of pathogenic CNVs had significantly
larger regulatory disruption scores in the direction of the dosage
change with deletions having a more severe reduction in
expression among intolerant genes due to these deletions (p=
1.78 × 10−26, mean score in pathogenic deletions=−5.21, mean
score in nonpathogenic deletions=−0.18, Wilcoxon test) and
duplications having a dramatic increase (p= 9.76 × 10−39, mean
score in pathogenic duplications= 12.67, mean score in
nonpathogenic duplications= 0.52). Despite ascertainment bias
leading to longer CNVs being more likely to overlap pathogenic
variants, prioritizing variants by regulatory disruption would
identify more pathogenic deletions than prioritizing by length,T
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with four of the top ten variants being pathogenic if ranked by
length (two complete overlaps) and seven by regulatory
disruption (five complete overlaps). The regulatory disruption
score also better prioritized pathogenic deletions than number of
all genes affected, number of intolerant genes (top 10%) affected
and AF, which has limited utility since most deletions (53% or

10,776) have the same frequency, as singletons. (Fig. 6a,
Supplementary Data 1). For duplications, the regulatory disrup-
tion score performs similarly to length but still outperforms
other measures (Fig. 6b, Supplementary Data 2). These results
indicate the potential of this metric to contribute to improved
prioritization of disease causing CNVs, particularly deletions.
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Discussion
The integration of genome and transcriptome data on post-
mortem brains from the CMC has provided one of the first
opportunities for large-scale characterization of the impact of rare
SVs on expression in the brain. Here, we demonstrate evidence of
selection on rare regulatory SVs, particularly those that alter
CTCF binding sites. We found a clear and predictable role for

genic and regulatory SVs in altering expression, and we showed
that the degree of expression influence is shaped by the intoler-
ance of a gene to deleterious variation. These results suggest the
potential to functionally predict and annotate the consequences of
SVs on expression. Illustrating this potential, we derived a model
to infer expression effects of SVs in independent samples,
and applied it to the largest SV resource currently available.
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This provided evidence that annotating SVs by their regulatory
burden could aid in prioritizing disease relevant variants.

Selection maintains deleterious variation at lower allele fre-
quencies, enabling the use of frequency as a proxy for implicating
variant classes that may contribute to phenotypes negatively
affecting fitness. Here, we showed that SVs overlapping brain
regulatory elements including enhancers and CTCF sites were
seen at significantly lower frequencies than SVs that were intronic
or intergenic. This result remained true even after accounting for
SV length and could also be shown in an independent and sub-
stantially larger dataset (gnomAD). Regulatory variants, particu-
larly SVs, have the potential to alter the expression of many genes
and previous work has already implicated de novo variants in
fetal enhancers in risk for neurodevelopmental disorders26. As an
example, a deletion of a CTCF site could enable enhancer activity
of nearby genes, a mechanism known as enhancer hijacking that
is particularly common in cancer27. Based on comparison of
frequency and singleton proportion within our sample and
replicated within gnomAD, it appears that SVs altering brain
relevant CTCF sites are as infrequent as genic SVs; this suggests
that a substantial proportion may be deleterious and being
actively removed from the population by selection. Previous work
has directly tested this hypothesis using very different data and
approaches and found similar results21. With the growing
amount of functional and genomic data, assessing the role of SVs
on regulatory elements, particularly CTCF sites, in disease will
further assess the validity and importance of this finding.

Rare SVs show substantial but variable effects on expression
that can be quantified. While identifying potential carriers of rare
functional SVs using expression outliers is a practical and valid
approach, in our data using this definition would result in the
identification of only a small proportion of all genic SVs
(including missing most full gene CNVs) and a substantially
smaller proportion of regulatory SVs. The approach taken here
requires genomic annotations to implicate regulatory effects and
an assumption that the annotated elements are functional.
Despite these limitations, it is clear that both genic and regulatory
SVs have significant functional impact that can be quantified and
used to infer expression effects of SVs in independent datasets.
These effects are strongest when altering exonic sequence, but are
significant when altering only promoter and enhancer sequence
as well. In all cases the effect is proportional to the amount of
functional sequence affected.

We specifically required that regulatory element annotation be
gene-specific to facilitate prediction of enhancer-gene associa-
tions. In other words, we showed that we can quantify the effect
of a CNV on a specific gene. As ongoing efforts to understand the
gene-specific functions of enhancers improve regulatory annota-
tions, so too will the approaches in this paper be improved in
accuracy and expanded beyond the roughly 30% of genes we were
able to include. Better enhancer-gene target annotations would
increase the number of CNVs that could be predicted and the
performance of those predictions. We identified a significant
negative effect of duplications altering enhancers. This result
presents a potentially intriguing implication regarding the
direction of regulatory effect of enhancer duplications. One
potential concern is that this effect is seen substantially more
strongly in one of our two cohorts suggesting a heterogenous or
batch effect. Further work is required to better understand the
role of enhancer duplications on expression. We did not include
CTCF sites in the prediction model as it was not clear how to
directly link them to individual genes, however, based on the
likely deleteriousness of CTCF SVs, we anticipate effects on
potentially many genes and quantifying those effects is an area of
future work. We did include TAD annotations as a surrogate for
potential contribution to the expression consequence of an SV,

and we identified a significant magnification in effect on
expression when a deletion and gene were within the same TAD,
pointing to the importance of TADs in the regulatory landscape.
We present a simple linear model that can meaningfully predict
expression effects of rare SVs and anticipate that improvements
in regulatory annotation and more sophisticated modeling will
further the ability to make these predictions.

Improvements in annotation have enabled better prioritization
of variants that may cause or increase risk of disease. One avenue
to improved annotation has been leveraging large numbers of
sequenced individuals in order to quantify the intolerance of each
gene to deleterious variation. Here, we show that gene level
intolerance metrics also inform regulatory effects of SVs. Not
surprisingly, SVs are less likely to affect intolerant genes but when
they are the proportion of the exonic sequence affected is sig-
nificantly smaller. Combining our SV expression predictions and
previously generated gene intolerance measures allowed us to
annotate the overall regulatory disruption of an SV by weighting
the predicted expression consequences by the relative deleter-
iousness of the gene affected. For example, a complete deletion of
a gene where LoF variants are rarely or never seen will be
weighted higher than that of a gene that is frequently knocked out
in the population. To demonstrate the potential utility of this
regulatory disruption score, we annotated all CNVs in the gno-
mAD SV dataset and showed that our annotations were corre-
lated with variants that substantially overlapped those that have
previously been classified as pathogenic. Further, rank ordering
variants by the most extreme regulatory disruption scores enri-
ched for pathogenic variants that would have not been identified
by length, frequency or number of genes. These variants would
also not have been identified simply by looking for CNVs that
affected intolerant genes as the majority of both the deletions
(57/84) and duplications (46/84) were not among the 1.6% of
CNVs in gnomAD SV that affected at least one of the 10% most
intolerant genes. We note that the regulatory disruption score
performs better for deletions than for duplications which could be
a product of our improved prediction accuracy and/or related to
the greater challenges in assigning pathogenicity to duplications.
At present, the regulatory disruption score provides an additional
metric that may serve to highlight potential pathogenic CNVs not
highlighted by other approaches. These variants would still
require the same clinical scrutiny applied to any other prioritized
CNVs for determining true pathogenicity. Therefore, potential
exists for annotation of regulatory disruption to improve prior-
itization of disease causing or risk increasing SVs; however, fur-
ther work with clinical or disease samples will be required to fully
assess the added value of this approach.

Our work has several limitations, including an assumption that
effects of SVs on expression are largely products of proportional
alterations on genic and regulatory genomic content. Our pre-
dictions demonstrate that this assumption holds on average;
however, we anticipate gene and regulatory element specific
effects to exist. This assumption was necessary because, in the
case of rare SVs, estimating individual variant effects is under-
powered. Further, it is likely that the proportional relationship
between exonic sequence and expression effect is at least in part
due to the use of constituent gene products and future use of
isoform level expression should provide more specificity of SV
effect. We also leverage assumptions about the direction of effect
for large CNVs, and show that this direction of effect extends to
smaller variants. We largely focus on CNVs given the expected
directional effects as well as the predominance of these variants
among our confident calls, which better powers these analyses.
We can show expression effects of inversions; however, these
effects are substantially smaller and not in a specific direction. We
also see very similar patterns of deleteriousness, through lower
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frequencies, in other classes of SVs that alter regulatory elements
and genes. SVs that are not CNVs are still a challenge to call
accurately and harder to validate given the smaller set of pre-
viously identified variants of high confidence. We anticipate
improvements in calling these variants to lead to the ability to
better define their functional role in the near future.

This effort was entirely focused on the brain: the expression
data were from brain tissue and all of the regulatory elements
included were identified in the brain. Some findings, such as the
deleteriousness of CTCF sites and the basic prediction model,
likely hold true across other tissues as the assumptions are not
tissue-specific and CTCF sites are relatively shared across tissues.
For other results, such as the expression consequences of
enhancer SVs or the regulatory disruption scores, it is unclear
how well they will generalize given the tissue-specific nature of
enhancers and the fact that brain expressed genes are among the
most conserved and intolerant to variation. It is, therefore,
advisable to develop these models in a tissue-specific manner
wherever possible.

In conclusion, genome-sequencing and RNA-sequencing when
combined in the same samples can be used to interpret the
transcriptional consequences of SVs for improved annotation of a
variant class that, despite its clear importance, remains difficult to
quantify its functional effect.

Methods
Cohorts. Samples were included from two different cohorts. The CMC study is a
combined collection of brain tissues from the Mount Sinai NIH Brain Bank and
Tissue Repository (n= 127), The University of Pennsylvania Brain Bank of Psy-
chiatric Illnesses and Alzheimer’s Disease Core Center (n= 62) and The University
of Pittsburgh NIH NeuroBioBank Brain and Tissue Repository (n= 139). Tissue
for the collection was dissected at each brain bank and shipped to the Icahn School
of Medicine at Mount Sinai (ISMMS) for nucleotide isolation and data generation
in one facility in order to reduce site-specific sources of technical variation. Post-
mortem tissue from schizophrenia and bipolar disorder cases were included if they
met the diagnostic criteria in DSM-IV for schizophrenia or schizoaffective disorder,
or for bipolar disorder, as determined in consensus conferences after review of
medical records, direct clinical assessments, and interviews of care providers. Cases
that had a history Alzheimer’s disease, and/or Parkinson’s disease, or acute neu-
rological insults (anoxia, strokes, and/or traumatic brain injury) immediately prior
to death, or were on ventilators near the time of death, were excluded. The
CMC_HBCC study includes brain samples from the NIMH Human Brain Col-
lection Core (n= 445). All specimens were characterized neuropathologically,
clinically and toxicologically. A clinical diagnosis was obtained through family
interviews and review of medical records by two psychiatrists based on DSM-IV
criteria. Nonpsychiatric controls were defined as having no history of a psychiatric
condition or substance use disorder. Among the 773 samples used here, there are
505 males and 268 females. Self-reported ancestries consisted of 484 European, 264
African, 15 Hispanic, 9 Asian and 1 other. Forty-eight percent of the samples had a
psychiatric diagnosis (287 schizophrenia, 83 bipolar disorder) and the remaining
403 were considered controls28. All research complied with ethical regulations and
was approved by the Vanderbilt University Medical Center Institutional Review
Board (IRB# 161488).

DNA Isolation. DNA for all 773 samples was isolated from approximately 50 mg
dry homogenized tissue from the dorsal lateral prefrontal cortex (DLPFC). All
tissue samples had corresponding tissue samples that were isolated for RNAseq. All
DNA isolation was done using the Qiagen DNeasy Blood and Tissue Kit
(Cat#69506) according to manufacturer’s protocol. DNA yield and genomic quality
number (GQN) was quantified using Thermo Scientific’s NanoDrop and the
Fragment Analyzer Automated CE System (Advanced Analytical). Totally,
96 samples had a GQN < 4, but were not excluded from genome-sequencing. The
mean yield was 9.9 µg (SD= 10.4) and the mean GQN was 5.6 (SD= 1.47).

DNA library preparation. All samples were submitted to the New York Genome
Center for genome-sequencing, where they were prepared for sequencing in ran-
domized batches of 95. The sequencing libraries were prepared using the Illumina
PCR-free DNA sample preparation Kit. The insert size and DNA concentration of
the sequencing library was determined on Fragment Analyzer Automated CE
System (Advanced Analytical) and Quant-iT PicoGreen (ThermoFisher) respec-
tively. A quantitative PCR assay (KAPA), with primers specific to the adapter
sequence, was used to determine the yield and efficiency of the adapter ligation
process.

Genome-sequencing library preparation and sequencing. Libraries for genome
sequencing were generated from 100 ng of genomic DNA using the Illumina
TruSeq Nano DNA HT sample preparation kit. Genomic DNA were sheared using
the Covaris sonicator (adaptive focused acoustics), followed by end-repair,
bead-based size selection, A-tailing, barcoded-adapter ligation followed by PCR
amplification. Final libraries were evaluated using qPCR, picogreen and Fragment
analyzer. Libraries were sequenced on a 2 × 150 bp run of a HiSeq X instrument.

Genome-sequencing pipeline. Paired-end 150 bp reads were aligned to the
GRCh37 human reference using the Burrows–Wheeler Aligner (BWA-MEM
v0.78) and processed using the best-practices pipeline that includes marking of
duplicate reads by the use of Picard tools (v1.83, http://picard.sourceforge.net),
realignment around indels, and base recalibration via Genome Analysis Toolkit
(GATK v3.2.2). Variants were called using GATK HaplotypeCaller, which gen-
erates a single-sample GVCF. To improve variant call accuracy, multiple single-
sample GVCF files were jointly genotyped using GATK GenotypeGVCFs, which
generated a multi-sample VCF. Variant Quality Score Recalibration (VQSR) was
performed on the multi-sample VCF, which added quality metrics to each variant
that can be used in downstream variant filtering.

SV discovery. SVs were detected using a discovery pipeline29 that relies upon an
ensemble of SV detection algorithms to maximize sensitivity, followed by a series of
filtering modules to control the overall false-discovery rate (FDR) and refine var-
iant predictions. In brief:

1. Raw SV calls collection: Five algorithms that used discordant pair-end reads
(PE) and split reads (SR) to predict SVs, i.e., DELLY30 (v0.7.5), LUMPY31

(v0.2.13), Manta32 (v1.01), Wham33 (v1.7.0) and MELT34 (v2.1.4), were
executed in per-sample mode with their default parameter. A series of read
depth-based (RD) algorithms were also applied for CNV detection,
including CNVnator35 (v0.3.2), GenomeSTRiP36 (v2), and a custom version
of cn.MOPS29. These algorithms were applied to male and female samples
separately, each in ~100-sample batches. For each batch, we composed a
coverage matrix across all samples at 300 bp and 1 kb bin sizes across each
chromosome with N-masked bases excluded, then applied cn.MOPS, split
raw calls per sample, segregated calls into deletions (copy number < 2) and
duplications (copy number > 2) and merged the 300 bp and 1 kb resolution
variant predictions per sample per CNV class using BEDTools merge.

2. Aberrant alignment signature collection: We collected discordant PE and SR
evidence through svtk collect-pesr, RD evidence through svtk bincov with N-
masked regions excluded and BAF evidence from GATK HaplotypeCaller-
generated VCFs using a custom script (https://github.com/talkowski-lab/
CommonMind-SV/blob/master/scripts/vcf2baf.sh). Following evidence col-
lection per sample, we constructed PE, SR, RD, and BAF matrices merged
across each phase of sequencing that included 327 (SKL_10073), 326
(SKL_11154), and 119 (SKL_11694) samples, respectively through custo-
mized scripts (https://github.com/talkowski-lab/CommonMind-SV/tree/
master/Step1b_EvidenceCollection).

3. SV integration and refinement: SV calls detected by each algorithm
described above were integrated and calibrated through a series of filtering
modules to control the overall FDR and refine variant predictions. Raw
outputs from each algorithm were clustered across all samples for each of
three sequencing phases (327 samples in SKL_10073; 326 samples in
SKL_11154; 119 samples in SKL_11694). Once clustered across samples, the
integrated call set was filtered through a random-forest module that tests for
statistically significant differences between samples with and without each
SV based on four semi-orthogonal signatures: discordant PR and SR reads,
RD, and BAF. Finally, filtered, high-quality SV calls were integrated across
all three sequencing phases, then we performed alternate allele structure
resolution, complex SV classification, other variant refinements, and gene
annotation. The filtering module is adaptable to multiple input algorithms,
and this same pipeline has been applied to WGS data in ASD families29 and
population variation datasets9.

4. Benchmarking SV accuracy and validation: We have previously bench-
marked these SV discovery methods in the gnomAD-SV study9, and an
earlier iteration of the software was used in a study of autism quartet
families29. From analyses of 970 trios, we observed a low rate of Mendelian
violations (4.2%), consistent with our estimates of <5% FDR from these
methods. We further compared our SVs to those generated from long-read
genome-sequencing for four samples and observed a 94.0% confirmation
rate for 19,316 SVs. Moreover, in our prior study of autism quartets, we
performed extensive molecular validation on all de novo SVs predicted in
that study, revealing a 97% molecular validation rate for predicted variants
in those analyses, which compares well with benchmarking performed in
gnomAD-SV.

SV dataset description. We successfully applied all SV discovery algorithms on
772/773 (99.9%) of the CMC samples, with one failed sample (MSSM-DNA-PFC-
375). All 772 samples were included in the SV integration pipeline with SVs
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assigned in the final call set. The final analyses yielded 125,260 SVs, including
62,948 deletions, 30,547 duplications, 31,155 insertions, 268 simple inversions, 341
complex SVs, and 1 reciprocal translocation. On average, 6220 SVs were identified
per sample, consisting of 3579 deletions, 755 duplications, 1839 insertions, 15
inversions, and 14 complex SVs. The number of SVs by class are comparable to
other recent SV datasets from short-read genome sequencing2,9,17,37. For the
insertions, 1146 were further classified as mobile elements insertions, including
1005 Alu, 92 LINE1 and 49 SVA variants. The number of SVs distributed pro-
portionately by read depth among the phases and matched expected demographic
history (e.g., 1421 more SVs were detected on average for African-American
individuals than all other populations).

Identification and removal of SV outliers. We carefully examined the set of 772
individuals with SV calls for technical outliers (e.g., related to genome-sequencing
generation or biological processes associated with DNA extraction of the post-
mortem samples). We removed one individual for presence of an abnormal sex
chromosome (XXY) which had been previously noted28. We further identified
16 samples that represented CNV outliers resulting from anomalous read dosage as
calculated by our dosage scoring metric9 or if they carried too many or too few
CNVs, defined by 3*IQR (interquartile range) of CNVs per individual or genomic
content that they alter. After outlier exclusion, we retained 755 (97.8%) of samples
with SV data.

RNA-sequencing pipeline. Samples were processed separately by cohort: CMC
and CMC_HBCC38.

RNA-sequencing Re-alignment. RNA-sequencing reads were aligned to GRCh37
with STAR39 (v2.4.0g1) from the original FASTQ files. Uniquely mapping reads
overlapping genes were counted with featureCounts40 (v1.5.2) using annotations
from Ensembl v75.

RNA-sequencing Normalization. To account for differences between samples,
studies, experimental batch effects and unwanted RNA-sequencing specific tech-
nical variations, we performed library normalization and covariate adjustments
using fixed/mixed effects modeling. The workflow consisted of following steps:

1. Gene filtering: Out of ~56 K aligned and quantified genes only those
showing at least modest expression were used in this analysis. Genes that
were expressed more than 1 CPM in at least 50% of samples in each study
were retained for analysis. Additionally, genes with available gene length and
percentage GC content from BioMart December 2016 archive were
subselected from the above list. This resulted in approximately 14–16 K
genes in each batch.

2. Calculation of normalized expression values: Sequencing reads were then
normalized in two steps. First, conditional quantile normalization41 was
applied to account for variations in gene length and GC content. In the
second step, the confidence of sampling abundance was estimated using a
weighted linear model using voom-limma package in bioconductor42,43. The
normalized observed read counts, along with the corresponding weights,
were used in the following steps.

3. Outlier detection: Based on normalized log2(CPM) of expression values,
outlier samples were detected using principal component analysis44,45 and
hierarchical clustering. Samples identified as outliers using both the above
methods were removed from further analysis.

4. Covariate identification: Normalized log2(CPM) counts were then explored
to determine which known covariates (both biological and technical) should
be adjusted. For the CMC study, we used a stepwise (weighted) fixed/mixed
effect regression modeling approach to select the relevant covariates having
a significant association with gene expression. Here, covariates were
sequentially added to the model if they were significantly associated with
any of the top principal components, explaining more than 1% of variance
of expression residuals. For CMC_HBCC, we used a model selection based
on Bayesian information criteria (BIC) to identify the covariates that
improve the model in a greater number of genes than making it worse. That
is, covariates were added as fixed effects iteratively in three phases if model
improvement by BIC was observed in the majority of genes. Clinical,
ancestry and sample-specific technical variables were tested for model
improvement first. Covariates related to batch effects were next tested for
model improvement and finally, RNA-seq alignment-specific covariates.

5. Surrogate variable analysis adjustments: After identifying the relevant
known confounders, hidden-confounders were identified using surrogate
variable analysis46. We used a similar approach28 to find the number of
surrogate variables, which is more conservative than the default method
provided by the surrogate variable analysis package in R47. The basic idea of
this approach is to select surrogate variables for removal that explain more
variance than expected based on permuted data where all correlation should
be random. Thus, from a series of 100 permutations of residuals (white
noise) we identified the number of covariates to include. We applied the
IRW (iterative re-weighting) version of surrogate variable analysis to the

normalized gene expression matrix, along with the covariate model
described above to obtain residual gene expression.

6. Covariate adjustments: We performed a variant of fixed/mixed effect linear
regression, choosing mixed-effect models when multiple samples, were
available per individual, as shown here: gene expression ~ diagnosis+ sex+
covariates+ (1|Donor), where each gene in linearly regressed independently
on diagnosis, identified covariates and donor (individual) information as
random effect. Observation weights (if any) were calculated using the voom-
limma42,43 pipeline, which has a net effect of up-weighting observations
with inferred higher precision in the linear model fitting process to adjust
for the mean–variance relationship in RNA-sequencing data. The Diagnosis
component was then added back to the residuals to generate covariate-
adjusted expression.

All these workflows were applied separately for each cohort. For CMC_HBCC,
samples with age < 18 were excluded prior to analysis.

Ensuring sample consistency between genome-sequencing and RNA-
sequencing. To infer effects on expression from SVs, we had to ensure the
genome-sequencing and RNA-sequencing data were from the same individual. To
do so we used variant calling data from both platforms. We removed SNVs with
missing rate ≥ 0.05 and restricted only to biallelic variants. Upon merging the
genotypes from genome-sequencing and RNA-sequencing we calculated genome-
wide relatedness from estimates of identity-by-descent using Plink48 across all
cross-platform pairs of samples. For each genome-sequencing sample we identified
the appropriate matching RNA-sequencing sample requiring both near complete
relatedness (Pihat > 0.8) and no other sample with high relatedness. Across both
cohorts 622/632 (98%) samples matched the expected pair and 10 samples had to
be corrected.

Genomic annotation sources. All data were downloaded in the GRCh37/hg19
build of the human genome. We used TSS definitions from Ensembl v75. To map
regions of open chromatin, we used a set of DNase hypersensitive sites downloaded
from Roadmap Epigenomics49. We mapped the three-dimensional chromatin
architecture using TAD domains identified by PsychENCODE from Hi–C contact
matrices with 40 kb resolution in the prefrontal cortex (PFC, n= 2735)24. As a
proxy for TAD boundaries or other insulated regions, we used a set of CTCF
binding sites from ChIP-seq data downloaded from ENCODE in brain-relevant cell
types50. We merged overlapping CTCF peaks from each tissue into a single con-
sensus region (n= 100,894).

Comparison of allele frequencies across SV annotation classes. In order to
assess whether SVs affecting particular functional elements (genes, enhancers, etc.)
were present at lower frequencies than nonfunctional SVs we needed to account for
differences in lengths. That is, since longer SVs are more likely to affect functional
elements and are rarer (Supplementary Fig. 1) we want to break the dependence on
length to assess the role of the functional elements on AF. For each class of SVs
affecting a particular annotation we required a matching intergenic SV of the same
class that affected none of the annotations with a length within 500 base pairs or
10% of the length of the functional SV, whichever was shorter. We then tested for
differences in AF distributions between the two equal numbers of functional and
intergenic SVs using the non-parametric Wilcoxon test.

Cis-regulatory element annotations. We downloaded PFC enhancer annotations
(n= 79,056) from the PsychENCODE project24. These were generated by overlapping
cross-tissue DNase-seq and ATAC-seq assay information with H3K27ac ChIP-seq
peaks. Regions overlapping H3K4me3 peaks and within 2 kb of a TSS were excluded
from the set of putative enhancers. All ChIP-seq, ATAC-seq, and DNase-seq data were
filtered to include only high-signal peaks with a z-score greater than 1.64. We also
downloaded the high confidence set of enhancer annotations (n= 18,212) which, in
addition to the criteria above, require high PFC H3K27ac ChIP-seq signal (z-score >
1.64) in both the PsychENCODE and Roadmap Epigenomics experiments. We gen-
erated a set of promoter annotations by using 2 kb windows upstream from each TSS
(n= 57,773). We intersected these 2 kb windows with PFC H3K27ac from Psy-
chENCODE and PFC H3K4me3 from Roadmap Epigenomics to create a set of high
confidence promoters (n= 5736)24,49. As in the enhancer definition, the H3K27ac and
H3K4me3 ChIP-seq data included only high signal peaks with a z-score > 1.64.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNAseq covariates and WGS variant calls are available from the CommonMind
Consortium (CMC) Knowledge Portal together with additional data from the CMC
cohorts: http://CommonMind.org. Data in the Portal is either open, where the only
requirement is to acknowledge data contributors in publications, or controlled.
Controlled data access applications must be placed through the NIMH Repository and
Genomics Resources (https://www.nimhgenetics.org/resources/commonmind). RNAseq:
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CMC_HBCC_DLPFC_ResidualExpression.csv: https://doi.org/10.7303/syn22000731.1.
CMC_MSSM-Penn-Pitt_DLPFC_ResidualExpression.csv: https://doi.org/10.7303/
syn22000700.1. CMC_Human_rnaSeq_metadata.csv: https://doi.org/10.7303/
syn18358379.4. WGS: CMC_MSSM-Penn-Pitt-HBCC.SVs.20180426.vcf.gz: https://doi.
org/10.7303/syn21914156.2. CMC_Human_WGS_metadata.csv: https://doi.org/10.7303/
syn22005337.2. Samples_passingQC.csv: https://doi.org/10.7303/syn22005423.1.
Clinical/Demographic: CMC_Human_clinical_metadata.csv: https://doi.org/10.7303/
syn3354385.5.

Code availability
Code for generating regulatory disruption scores is available at https://github.com/
RuderferLab/CNV_FunctionalAnnotation. Custom scripts for aberrant alignment
signature collection are available at https://github.com/talkowski-lab/CommonMind-SV.
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