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Abstract

Placental dysfunction is implicated in many pregnancy complications, including preeclamp-

sia and preterm birth (PTB). While both these syndromes are influenced by environmental

risk factors, they also have a substantial genetic component that is not well understood. Pre-

cisely controlled gene expression during development is crucial to proper placental function

and often mediated through gene regulatory enhancers. However, we lack accurate maps

of placental enhancer activity due to the challenges of assaying the placenta and the diffi-

culty of comprehensively identifying enhancers. To address the gap in our knowledge of

gene regulatory elements in the placenta, we used a two-step machine learning pipeline to

synthesize existing functional genomics studies, transcription factor (TF) binding patterns,

and evolutionary information to predict placental enhancers. The trained classifiers accu-

rately distinguish enhancers from the genomic background and placental enhancers from

enhancers active in other tissues. Genomic features collected from tissues and cell lines

involved in pregnancy are the most predictive of placental regulatory activity. Applying the

classifiers genome-wide enabled us to create a map of 33,010 predicted placental enhanc-

ers, including 4,562 high-confidence enhancer predictions. The genome-wide placental

enhancers are significantly enriched nearby genes associated with placental development

and birth disorders and for SNPs associated with gestational age. These genome-wide pre-

dicted placental enhancers provide candidate regions for further testing in vitro, will assist in

guiding future studies of genetic associations with pregnancy phenotypes, and aid interpre-

tation of potential mechanisms of action for variants found through genetic studies.

Introduction

The placenta is a complex temporary organ, essential for successful pregnancy. The placenta

performs many vital functions including transfer of nutrients to the developing fetus and pro-

tection against infectious agents [1]. Placental dysfunction has been connected to pregnancy

complications, such as preeclampsia and preterm birth (PTB) [2–5]. PTB and preeclampsia

both have environmental risk factors as well as a genetic component that is not well
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understood. Family and pedigree studies of PTB and preeclampsia suggest strong genetic com-

ponents, but heritability estimates for both vary considerably [5,6], and genetic associations

found through genome-wide association studies (GWAS) of these and other disorders of preg-

nancy have been difficult to replicate [7,8]. Though a recent study of more than 43,000 women

has identified and replicated several loci associated with gestational duration and preterm

birth [9].

Precisely controlled gene expression during pregnancy is crucial to proper development,

and these gene regulatory “programs” are mediated by gene regulatory elements, like enhanc-

ers, that play a large role in development and thus disease [10–12]. Disruption of enhancers

and gene regulation have been shown to influence risk for many complex diseases [10,13].

Thus, mapping the enhancer landscape is a common step in the search for and interpretation

of genetic associations. As is common for complex diseases, the genetic variants that have been

implicated in PTB risk by GWAS are non-coding and thus difficult to interpret. Typical

enhancer identification methods are impractical in early placental stages for many reasons, but

perhaps most importantly because sampling the placenta increases risk of pregnancy loss [14].

In vivo studies in model organisms have lent insight to early placental development, but the

rapid evolution of pregnancy across taxa often limits the translatability of this work [15].

To address the challenge of mapping gene regulatory elements active in the placenta, we

used the EnhancerFinder [16] machine learning approach to predict placental enhancers.

Identifying and interpreting enhancers using computational methods that synthesize existing

functional studies, transcription factor (TF) binding, and evolutionary information avoids

many of the difficulties of studying the placenta discussed above [16–18]. We predict a

genome-wide set of 4,562 placental enhancers. These putative enhancers show clear relevance

to placental biology; they are located near many genes involved in placental function and

development and are significantly enriched for genetic variants associated with pregnancy

phenotypes and complications. These predicted enhancers provide candidate regions for

researchers to test in vitro, and propose mechanisms of action for variants found through

GWAS. To facilitate their use, all the enhancer predictions are integrated into GEneSTATION

(v2.0) [19].

Results

A two-step machine-learning framework for placental enhancer prediction

To predict placental enhancers, we used the EnhancerFinder algorithm, which integrates DNA

sequence, evolutionary, and functional properties of known enhancers to build statistical mod-

els that enable the identification of new enhancers [16]. This approach proceeds in two steps.

First, a model is built to distinguish known enhancers active in any cellular context from

regions from the genomic background (Step 1). Then, models for classifying enhancers active

in particular tissues are trained by comparing enhancers active in a tissue of interest to enhanc-

ers only active in other tissues (Step 2). This two-step approach yields more specific predic-

tions than a single step approach [16].

We trained our classifiers using enhancers defined by cap analysis of gene expression

(CAGE) from the FANTOM5 Transcribed Enhancer Atlas [20]. Analyzing 411 different tis-

sues and cell lines, FANTOM5 identified 38,538 robust human enhancers. Of these enhancers,

748 were active in the human placenta, and placenta was the only tissue of activity for 178. We

characterized each enhancer by its DNA sequence properties, evolutionary conservation, and

chromatin state. Each region’s DNA sequence composition was quantified by counting the

occurrence of all five-nucleotide-long (5-mer) DNA sequences within the region. Evolutionary

conservation was quantified using mammalian conserved elements from phastCons [21].

Genome-wide maps of gene regulatory enhancers in the human placenta
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Finally, we used functional genomics data from the Roadmap Epigenomics Project [22],

including histone modifications and DNaseI hypersensitivity data from hundreds of cellular

contexts, to quantify the chromatin state of the region. (See the Methods for a complete

description of the features.)

Then, using these features, we trained a multi-kernel support vector machine (SVM) classi-

fier—with one kernel for each of the three data types—to distinguish robust enhancers from

random, length-matched non-enhancer genomic background regions (Fig 1; Step 1). For Step

2, we trained a placental enhancer classifier using the 748 known placental enhancers as posi-

tives and a random subset of 2,000 robust non-placental enhancers as the negatives (Fig 1).

Accurate prediction of known placental enhancers

To assess the performance of our trained classifiers, we used 10-fold cross validation to com-

pute average receiver operating characteristic (ROC) curve and precision-recall (PR) curves.

In 10-fold cross validation, ten models are trained using a different 90% of the positive and

negative training regions, and then each model is evaluated on remaining 10% of the regions.

We quantified our method’s overall performance by the average area under the curve (AUC)

over the 10 runs.

The trained Step 1 classifier performs very well at identifying FANTOM enhancers from

genomic background (Fig 2A, S1 Fig; ROC AUC = 0.93, PR AUC = 0.78). The classifier trained

to distinguish placental enhancers from enhancers active in other contexts (Step 2) also has

strong performance (Fig 2B, S1 Fig; ROC AUC = 0.84, PR AUC = 0.70). While distinguishing

enhancers active in the placenta from enhancers active in other tissues is more challenging

than generally distinguishing enhancers from the genomic background, our approach still per-

forms well at this task.

Functional genomics data from pregnancy-related tissues are the most

informative for distinguishing placental enhancers from other enhancers

To investigate the genomic attributes most useful to the placental enhancer classifier, we exam-

ined the individual feature weights for features used in the functional genomics kernel after

Step 2 training. A positive feature weight indicates association with placental enhancer activity,

while a negative feature weight is associated with enhancer activity in other contexts. The most

informative contexts (i.e., the contexts whose histone modification features had the largest

absolute weights) within the kernel were from placental and related tissues (trophoblast cells,

amnion, and endometrial stromal cells), and the least informative features came from cellular

contexts unrelated to pregnancy (Fig 3).

A genome-wide map of regions with potential placental regulatory activity

To identify genomic regions with potential placental regulatory activity genome-wide, we

applied our trained classifiers to the human genome by tiling all human chromosomes into

regions the length of an average FANTOM5 placental enhancer (400 bp) overlapping by 200

bp. We filtered out tiles that overlapped gaps in the genome assembly, exons, and likely pro-

moter regions (5 kb upstream of each transcription start site (TSS)). Tiles assigned to both the

enhancer and placental enhancer classes by the SVM classifiers were considered putative pla-

cental enhancers. Those with strong predictions in both classifiers (SVM score > 1) were con-

sidered high confidence putative placental enhancers. Merging overlapping tiles yielded 4,562

high-confidence placental enhancers, covering 3,475,438 bp of the genome, and 33,010 puta-

tive enhancers, covering 38,893,990 bp of the genome (Fig 4, Table 1).

Genome-wide maps of gene regulatory enhancers in the human placenta
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Predicted enhancers are enriched near genes with placental functions

To evaluate the relevance of our high-confidence predicted placental enhancers to placental

biology and pregnancy, we examined nearby genes in the context of known gene annotations.

Using the functional enrichment analysis tool GREAT [23], we mapped each region to putative

gene targets using the default basal plus extension strategy and then tested for the enrichment

of relevant Gene Ontology (GO) functional annotations. We found significant enrichment for

many relevant terms such as “placenta development” and “decreased placental labyrinth size”

(selected terms: Table 2, full list: S1 Table).

Predicted placental enhancers are enriched for regions associated with

gestational age and preterm birth

To assess the biological importance of our high-confidence placental enhancers, we tested for

enrichment of regions associated with gestational age and preterm birth in a recent genome-

wide association study (GWAS) [9]. Forty-three of our predicted enhancers overlapped 12 out

of 14 GWAS regions. To interpret this, we compared the observed overlap to the number of

overlaps found for 10,000 randomly generated sets of genomic regions length- and chromo-

some-matched to our predictions and excluding genomic gaps. Our putative enhancers were

significantly enriched for relevant GWAS catalogued regions associated with preterm birth

and gestational age (P< 0.0001) with a calculated fold enrichment of 2.69 (relative to the

mean of the randomized sets).

Fig 1. Schematic of the placental enhancer prediction pipeline. First, we associated known enhancers from diverse tissues (+) and non-enhancer

regions from the genomic background (–) with a range of informative features including their DNA sequence patterns, functional genomics data, and

evolutionary conservation across species. Second, we trained a multi-kernel support vector machine to distinguish the enhancers from regions without

enhancer activity using the associated features. We evaluated the performance of trained classifiers using 10-fold cross validation. Finally, we applied a

classifier trained to distinguish enhancers from non-enhancers to all sequences in the human genome (Step 1). Then we applied a second classifier

trained to distinguish placental enhancers from enhancers active in other tissues (Step 2). This produced a set of genome-wide placental enhancer

predictions (S1 and S2 Files).

https://doi.org/10.1371/journal.pone.0209611.g001

Fig 2. The trained classifiers accurately identify placental enhancers. (A) Receiver operating characteristic (ROC)

curves for the classifiers trained to distinguish enhancers from non-enhancers (Step 1) and (B) placental enhancers

from enhancers active in other tissues (Step 2). Both perform significantly better than expected by chance with areas

under the ROC curve (AUC) of 0.93 and 0.84 respectively. The shaded region represents the performance range

observed over the 10 cross validation runs. The diagonal line represents chance performance. The corresponding

Precision-Recall curve AUCs are 0.78 and 0.70, respectively (S1 Fig).

https://doi.org/10.1371/journal.pone.0209611.g002
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To compare the high-confidence placental enhancer set to the candidate placental enhancer

set, we tested the enrichment for specific functions near the candidate regions using GREAT

and for overlap with the pregnancy-related GWAS regions. We found similar placenta-related

GO terms enriched near the larger candidate placental enhancer set, for example: with GO

terms such as “placenta development” (P = 3.80e–147) and “embryonic placenta development”

(P = 3.82e–99). The candidate enhancers were also enriched for GWAS regions associated

Fig 3. Functional genomics data from pregnancy-related tissues are highly weighted by the placental enhancer classifier. The absolute value of the

weight assigned to each functional genomics feature in the SVM is plotted (positive weight: blue, negative weight: white, mean of absolute weights: black

X). The absolute weights on the functional genomics features from the other 117 contexts were collapsed into one box plot (outliers are plotted as gray

diamonds).

https://doi.org/10.1371/journal.pone.0209611.g003
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with preterm birth and gestational age (relative fold enrichment: 2.23, P< 0.0001). Thus, there

is evidence to suggest that additional regulatory regions relevant to placental biology are pres-

ent in the candidate set.
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Fig 4. High-confidence predicted placental enhancers are found across the human genome. We predicted 4,562 high confidence placental
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available for prediction.

https://doi.org/10.1371/journal.pone.0209611.g004
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Predicted placental enhancers expand previously published placental

enhancer datasets

We further compared our placental enhancer predictions to a published set of 2,216 computa-

tionally predicted placental enhancers [17]. These candidates were predicted by identifying

TFs implicated in placental and trophoblast function by GREAT and then predicting enhancer

activity based on clustering of TF binding sites (TFBS) in the mouse genome. We will refer to

these putative enhancers as “placental TFBS clusters.”

We calculated the overlap between the placental TFBS clusters that mapped to the

human genome and did not overlap exons or a 5 kb region upstream of TSSs (1,044 pla-

cental TFBS clusters) and our high-confidence placental enhancers. We found 82 ele-

ments (20,154 bp) overlapped between the two sets. Because the biological information

used differed between the sets, it is not surprising that our predictions and the placental

TFBS clusters identify largely distinct regions of the genome. Furthermore, nearly all of

our high-confidence predicted enhancers (4375/4562, 96%) overlap TFBS clusters

defined by the ENCODE project over 161 TFs (S3 File). This suggests that they have gene

regulatory potential; however, we note that these binding sites were determined in non-

placental contexts.

To evaluate the functional relevance of the previously published placental TFBS clusters, we

tested for enriched relevant functions using GREAT and for enrichment in overlap with pre-

term birth and gestational age GWAS regions. We examined the GO biological process terms

“placenta development” and “embryonic placental development” and both were comparably

enriched among genes near the placental TFBS clusters (P = 2.95e–15 and P = 2.33e–17,

respectively) as among our predicted enhancers. The results were similar for enrichment for

pregnancy-related GWAS regions. While 43 of our placental enhancers fell within a GWAS

region associated with preterm birth and gestational age with a calculated fold enrichment of

2.69 (P< 0.0001), the TFBS clusters overlapped 13 elements had a fold enrichment of 3.07

(P = 0.0006). Overall, comparing the significant functional annotations of the placental TFBS

clusters with our predicted placental enhancers revealed similar levels of enrichment for rele-

vant functional terms.

Placental enhancers are enriched for ancient transposable elements

Transposable elements (TEs) often create regulatory elements in pregnancy-related tissues

[24–26]. We calculated the enrichment of the FANTOM placental enhancers as well as both

predicted sets for overlap with TEs. Overall, as expected due to the silencing of TEs across the

genome, each set is significantly depleted of TEs (P< 0.001, randomization test) compared to

the genomic expectation. However, the age distribution of TEs present in the placental

enhancers compared to TEs overlapped by permuted enhancer sets is significantly enriched

for TEs originating in the common ancestor of theria or before (Fig 5; P< 0.001, randomiza-

tion test). The enrichment for ancient TEs and depletion of more recent TEs is a common pat-

tern across validated enhancers [27], and thus the similar observation across our predicted

enhancers lends support to their enhancer activity.

Table 1. Statistical summary of genome-wide placental enhancer predictions.

Enhancer set Count Mean length (bp) Genome Coverage (bp)

High Confidence Placental Enhancers 4,562 762 3,475,438

Potential Placental Enhancers 33,010 846 38,893,990

https://doi.org/10.1371/journal.pone.0209611.t001
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Discussion

Using an established machine learning framework, we identified 4,562 high-confidence pla-

cental enhancers, as well as an expanded set of 33,010 candidate placental enhancers. These

putative regulatory regions are enriched near genes relevant to pregnancy, are enriched for

overlap with variants associated with diseases of pregnancy, and have similar transposable ele-

ment profiles as validated enhancers. In addition, the predicted enhancers significantly expand

previously published sets of placental enhancers, and thus provide greater power to interpret

genetic associations with diseases influenced by the placenta. For example, the fact that 12 out

of 14 regions associated pregnancy complications in a recent GWAS are in high linkage dis-

equilibrium with a predicted enhancer underscores the utility of these genome-wide enhancer

maps. These candidates suggest targeted regions for testing when seeking the causal variants in

these regions and dissecting how they influence pregnancy. More accurate interpretation of

these and future GWAS hits is necessary for understanding the complex biology of pregnancy

and eventually improving the identification and prevention of disorders such as preterm birth.

To facilitate the use of our enhancer maps, they are now integrated into the GEneSTATION

web platform for studying pregnancy and preterm birth [19].

Our predicted enhancer maps can be improved in several dimensions. First, they are

undoubtedly incomplete. Enhancer activity is highly context and stimulus dependent. Due to

Table 2. Placenta-relevant functions significantly enriched among genes near high-confidence predicted placental enhancers. GO BP = Gene Ontology Biological

Process.

Ontology Term Binomial Fold Enrichment Binomial FDR

Q-value

GO BP Placenta development 2.0 6.6e–13

GO BP Embryonic placenta development 2.2 1.0e–12

Mouse Phenotype Decreased placental labyrinth size 4.8 2.9e–33

Mouse Phenotype Abnormal placenta labyrinth morphology 2.4 1.5e–28

MGI Expression TS4 Zona Pellucida 2.1 3.9e–64

Disease Ontology Neoplasm of body of uterus 2.7 3.5e–24

Disease Ontology Persistent fetal circulation syndrome 4.8 1.7e–06

Disease Ontology Newborn respiratory distress syndrome 2.6 3.2e–06

https://doi.org/10.1371/journal.pone.0209611.t002

Fig 5. Validated and predicted placental enhancers are enriched for ancient transposable elements. We computed the enrichment for overlap of

transposable elements (TEs) with origins on different lineages for experimentally validated and predicted enhancer sets. The enrichment was

computed in reference to the mean of the genome-wide overlap observed in 1,000 (predicted) or 10,000 (FANTOM5) permuted enhancer sets. The

log2 of the relative change is given for each comparison. Asterisks indicate significant enrichment (P< 0.05, randomization test). Empty gray boxes

indicate there were not enough enhancers and TEs of a given origin to test for enrichment.

https://doi.org/10.1371/journal.pone.0209611.g005
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the paucity of training data from diverse contexts, we have focused on identifying a set of can-

didate regions that have hallmarks of potential regulatory activity in the placenta broadly with-

out making specific contextual predictions. Furthermore, the patterns learned by our machine

learning classifier generalize existing patterns in the evolution, sequence, and functional geno-

mics of known placental enhancers, but are constrained by what is currently known. Finally,

there is heterogeneity in the cellular makeup of the placenta and existing data do not enable

cell-specific predictions. As more enhancer data become available from relevant cellular con-

texts, we will continue to refine our predictions and integrate them with other annotations.

While the costs and technical difficulties of agnostically identifying enhancers are decreas-

ing, many tissues and cell types remain difficult to assay due to biological constraints and ethi-

cal considerations. These challenges are compounded for tissues like the placenta that are

rapidly evolving between species, limiting the utility of information garnered through the

study of model organisms. Computational approaches, such as those presented here, paired

with growing collections of experimentally validated regulatory regions provide a promising

avenue for enabling researchers to interrogate the gene regulatory architecture of the placenta

and other tissues that are difficult to assay.

Methods

Genome-wide placental enhancer predictions

We based our approach on the EnhancerFinder two-step machine learning algorithm for pre-

dicting enhancers and their tissues of activity. We first trained an SVM classifier based on

diverse sequence, evolutionary, and functional genomics features to distinguish known

enhancers active in a range of tissues from the genomic background. Then in the second step,

additional classifiers were trained to distinguish enhancers active in different tissues from one

another. In this step, all enhancers active in a tissue of interest (placenta) are used as positive

training examples and all enhancers not active in the tissue are treated as negatives.

Training regions. We downloaded the hg19 genomic locations of all 38,538 robust

human enhancers identified by CAGE from the FANTOM5 Transcribed Enhancer Atlas. The

data included 748 human placental enhancers, 24% (178) of which had activity only in the pla-

centa among all tissues tested by FANTOM5. The average length of a FANTOM5 placental

enhancer is 400 bp.

To train the enhancer classifier (step 1), the positive set consisted of a random subset of 385

robust human enhancers (fixed to a length of 400 bp at the center of any enhancer). Our nega-

tive set consisted of 2,000 random genomic regions matched to the length and chromosome

distribution of the positive set and excluding FANTOM5 enhancers and hg19 genome assem-

bly gaps. The random genomic regions were generated using shuffleBed [28]. To train the pla-

cental enhancer classifier (step 2), we used the 748 human placental enhancers (fixed at a

length of 400 bp from each enhancer center) as positives. The negative set consisted of a ran-

dom subset of 2,000 robust human enhancers, excluding placental enhancers. All analyses in

this paper were performed in reference to the UCSC Genome Browser February 2009 assembly

of the human genome (GRCh37/hg19). Any dataset not in this build was mapped over to hg19

coordinates using the liftOver tool from the UCSC Kent tools with default parameters [29].

Feature data. Three types of data were used as features in the MKL algorithm: functional

genomics, evolutionary conservation, and DNA sequence motifs. Each type of data was

assigned to its own kernel. Following the approach used in previous applications of Enhancer-

Finder [16], we used linear kernels, consisting of computed dot products of feature vectors, for

the functional genomics and evolutionary conservation data. For the DNA sequence-based

Genome-wide maps of gene regulatory enhancers in the human placenta
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features we used a 5-spectrum kernel. The MKL algorithm combines the three kernels by

learning weights to assign to each kernel from the training set [16].

For the functional genomics kernel, we obtained 980 histone modification datasets

(H3K27ac, H3K4me1, H3K4me4, etc.) and 39 DNase datasets from 128 cellular contexts in the

Human Epigenome Atlas [22], as well as H3K27ac, H3K4me3, and DNaseI peaks identified in

decidualized endometrial stromal cells from Lynch et al [24]. Feature vectors were constructed

by overlapping genomic regions in the training set with each functional genomics dataset.

Each region was associated with a binary vector that represented the presence or absence of

overlap with each feature dataset. We took evolutionary conservation scores from the UCSC

Genome Browser phastConsElements46way tracks for placental mammals, primates, and ver-

tebrates. Each genomic region was assigned the highest conservation score of any overlapping

phastCons element. Genomic regions not overlapping a phastCons element were assigned a

score of zero. To quantify the DNA sequence of a region of interest, we counted the occurrence

of all possible length 5 bp DNA sequence motifs (5-mers) within genomic regions of interest.

Classifier training and prediction. All classifiers were trained using the Multiple Kernel

Learning (MKL) functionalities of the SHOGUN Machine Learning Toolbox [30]. The algo-

rithm uses features of the training set to learn a linear function that separates positives from

negatives. Genomic regions can then be assigned a score based on their position relative to the

separating hyperplane learned by the SVM. A positive score indicates that the region belongs

to the positive set, while a negative score indicates membership in the negative set. The magni-

tude of the score indicates the confidence the algorithm places on its prediction. Only regions

that are predicted to be positives by both classifiers are considered candidate placental

enhancers.

Classifier evaluation. We evaluated the performance of our trained classifiers using

10-fold cross validation and computing ROC curves and precision-recall (PR) curves averaged

over folds. In a 10-fold cross validation, the training data are partitioned into 10 equal subsets,

and the classifier is trained 10 times. Each time, only 9 of the 10 subsets are used to train the

classifier. The trained classifier is then applied to the held-out subset and evaluated based on

the true status of these regions. The performance of the classifier is then quantified using ROC

AUC and a PR AUC.

Interpreting algorithm weights for the functional genomics kernel. Based on positive

and negative training data, our algorithm reports the kernel and feature weights learned dur-

ing training. The total kernel weight is computed along with the weight for each individual fea-

ture weight within that kernel. Positive values are assigned to features associated with the

positive input set and features associated with the negative input set score more negatively.

After training our placental enhancer classifier (Step 2), we examined the individual weights

within its functional genomics kernel to determine whether placenta-related histone modifica-

tions were weighted higher than histone modifications found in other cellular contexts. In this

case, positive weights are associated with placental enhancer activity and negative weights are

associated with enhancer activity in other cellular contexts.

Genome-wide placental enhancer prediction. To predict placental enhancers genome-

wide, we tiled each autosome into 400 bp regions (the average length of a FANTOM placental

enhancer) in overlapping increments of 200 bp. We omitted the sex chromosomes from our

analyses. These regions were filtered to remove any tiles that overlapped an exon or fell within

5 kb of a TSS to minimize association with promoter regions. Coordinates for exons and TSSs

were downloaded from the Ensembl GRCh37 Feb 2014 [31] using the Biomart archive. We

applied the trained enhancer and placental enhancer classifiers to all remaining tiles. We

merged all overlapping regions that received scores greater than zero from both the enhancer

and placental enhancer classifiers. The resulting 33,010 merged regions are our candidate
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placental enhancer set. To obtain a refined list of predicted regions, we fixed a minimum

threshold score of greater than one from both of our trained classifiers. After merging overlap-

ping regions that met our criteria, a subset of 4,562 candidate placental enhancers remained

and became our high-confidence placental enhancer set.

Analysis of genome-wide placental enhancer predictions

Gene ontology annotation enrichment. To identify the functional annotations, pheno-

types, and pathways enriched among genes nearby the predicted placental enhancers, we used

the web tool GREAT with the default settings. GREAT takes a set of genomic regions and asso-

ciates them with their putative target genes and target gene annotations [23]. We used the

“basal-plus-extension” strategy for defining genes’ regulatory domains; in this approach, each

gene is assigned a basal regulatory domain of 5 kb upstream and 1 kb downstream of the TSS

(regardless of other nearby genes). The regulatory domain is then extended in both directions

to the nearest gene’s basal domain, but no more than 1 Mb. GREAT accounts for the different

regulatory domains of each gene and corrects for differences in the probability of different

genes being considered targets by chance. GREAT then calculates the enrichment of annota-

tions within the input genes’ regulatory domains and returns the terms that are significantly

enriched near the input regions. We submitted our candidate placental enhancer set as well as

our high confidence placental enhancer set to GREAT, using the default entire human genome

as the background.

Enrichment for regions relevant to pregnancy. We calculated the enrichment for

GWAS SNPs in our candidate placental enhancer set and high-confidence placental

enhancer set. We obtained 14 preterm birth and gestational age GWAS regions (omitting

3 regions on the X chromosome) from a recent GWAS [9]. For each set of enrichment

analyses, we generated 10,000 sets of random genomic regions that were matched to the

predicted enhancer set based on the length and chromosome distribution. Then, we com-

puted the overlap of each of the 10,000 random region sets with each set of regions of

interest. Enrichment was calculated by dividing the overlap of our predicted set with the

mean overlap of the 10,000 randomly generated sets, and an empirical p-value was

obtained by counting the number of random sets for which as much or more overlap with

the regions of interest is observed.

Comparison to previous placental enhancer predictions. We downloaded a set of 2,216

placental enhancers defined using transcription factor binding site (TFBS) clusters related to

placental function from supplementary material of Tuteja et. al [17]. Of the 2,216 TFBS clusters

whose build was of the UCSC Genome Browser July 2007 assembly of the mouse genome

(NCBI37/mm9), 2,207 TFBS clusters mapped into hg19 using liftOver [29]. From these TFBS

clusters, we generated a subset of 1,044 regions by filtering out regions overlapping exons and

regions within 5 kb of a TSS. The motivation for generating a smaller subset of TFBS clusters

comes from our concern that predicted placental enhancers defined by TFBSs nearby TSSs

may have an increased chance of being associated with promoters rather than enhancers. All

enrichment tests were calculated on both the larger and smaller subset of TFBS clusters. Both

sets of TFBS clusters had comparable enrichments. We report them for the smaller set that is

more comparable to our enhancer sets here.

Transcription factor binding site cluster overlap. We considered TFBS clusters defined

by the ENCODE project based on ChIP-seq experiments for 161 different TFs from the UCSC

Genome Browser. The data were downloaded on Nov. 9, 2018 from: http://hgdownload.soe.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.

bed.gz.
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Transposable element enrichment analysis. TE genomic locations were retrieved from

RepeatMasker v4.0.5 [32]. The clades in which each TE is present were taken from Dfam v1.4

[33]. In situations where Dfam provided multiple clades, the clade of the most recent common

ancestor was designated as the origin. We collapsed all TEs originating in the last common

ancestor of amniota or before into one category.

For both the FANTOM5 placental enhancers and the high-confidence predicted placental

enhancers, we used shuffleBed [28] to shuffle enhancer regions around the genome. We con-

strained the shuffled regions to the chromosome of the corresponding observed region and

did not allow shuffled regions overlap one another, gaps in the genome assembly, or ENCODE

blacklist regions [34]. For the FANTOM5 enhancers, we created 10,000 sets of shuffled

regions. For the predicted enhancers, we created 1,000 sets of shuffled regions separately for

the high-confidence and candidate sets. We calculated the permutation-based p-value for each

lineage of origin for all TEs by calculating the number of permuted sets that overlapped more

or the same amount of TEs appearing on a given lineage. Tests were only performed if at least

10 enhancers overlapped a TE of the given lineage.

Supporting information

S1 Fig. The trained classifiers accurately identify placental enhancers. (A) Precision-recall

(PR) curves for the classifiers trained to distinguish enhancers from non-enhancers (Step 1)

and (B) placental enhancers from enhancers active in other tissues (Step 2). Both perform sig-

nificantly better than expected by chance with areas under the PR curve (AUC) of 0.78 and

0.70 respectively. The shaded region represents the performance range observed over the 10

cross validation runs.

(PDF)

S1 Table. Functional enrichment among genes near predicted placental enhancers. This

table contains the results of applying GREAT functional enrichment analysis with default

parameters to the 4562 high-confidence (high-conf) and 33,010 candidate (candidate)

enhancer predictions.

(XLSX)

S1 File. Genomic locations of the predicted high-confidence placental enhancers. This tab-

delimited BED file gives the locations of 4562 high-confidence placental enhancers in hg19

coordinates.

(BED)

S2 File. Genomic locations of the predicted candidate placental enhancers. This tab-delim-

ited BED file gives the locations of 33,010 candidate placental enhancers in hg19 coordinates.

(BED)

S3 File. Transcription factor binding sites overlapping the predicted placental enhancers.

This gzipped tab-delimited text file gives the locations of 118,345 TFBS from the ENCODE

consortium that overlap the predicted high-confidence enhancers.

(GZ)
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