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Abstract

Background: microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper
expression of MiRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the
evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well
understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions
and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will
help resolve differences in their functional dynamics and how they influence disease.

Results: We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between
human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with
disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for
genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs
implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing
contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs
are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older
genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find
that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than

unrelated miRNAs.

Conclusions: Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of
its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their
expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased
potential to cause disease. We anticipate that these patterns hold across mammalian species; however,
comprehensively evaluating them will require refining miRNA annotations across species and collecting functional

data in non-human systems.
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Background

MicroRNAs (miRNAs) are small, non-coding RNAs
found in eukaryotic cells that post-transcriptionally regu-
late mRNA targets [1]. miRNAs are fundamental ele-
ments of eukaryotic genetic regulatory networks [2];
they have been implicated in many cellular
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developmental  processes including proliferation,
apoptosis, and mitotic progression [3-5]. Excessive up-
regulation or down-regulation of miRNAs along with
aberrations in both target and miRNA nucleotide
sequences can induce disease [6]. For example, over-
and under-expression of miRNAs can disrupt cellular
differentiation in patterns characteristic of cancer cells
[7]. In total, hundreds of miRNAs have been associated
with human disease [8, 9].

miRNAs can be divided into evolutionarily related
families derived from common ancestral sequences.
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miRNAs in these families often play important biological
roles through redundant or concerted pathways [10-15].
Knowledge of the evolutionary history of a protein-
coding gene often provides insight into the function of
the protein it encodes [16, 17]. For instance, genes re-
sponsible for fundamental cellular processes are often as
old as the last common ancestor of all life, while genes
involved in cellular communication, a trait associated
with multicellular organisms, are enriched for origins at
the dawn of animal multicellularity.

Several studies have revealed that the evolutionary
dynamics of miRNA birth and change of function are sig-
nificantly faster than for protein-coding genes [18, 19].
However, the extent to which evolutionary context is in-
formative about miRNA function, expression, and targets
remains unresolved [19-22]. For example, recent studies
have come to differing conclusions on whether miRNAs
gain or lose target genes and expression in more tissues
over evolutionary time as they are integrated into func-
tional networks of the cell [18, 19, 21, 22]. Our under-
standing of the evolutionary relationships between human
miRNAs, their gene targets, their expression, and their in-
fluence on disease remains incomplete.

In this study, we comprehensively characterized the
connections between miRNA evolutionary origins, func-
tional dynamics, and relationship to human disease. We
found that the evolutionary age of a miRNA is strongly
correlated with its likelihood of contributing to disease.
Furthermore, as was observed for protein-coding genes,
human diseases vary in the evolutionary origins of their
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associated miRNAs. Consistent with the increased dis-
ease associations of miRNAs with age (and recent results
in Drosophila [21]), we observed an increasing regula-
tory influence of human miRNAs with age. Older miR-
NAs have greater breadth of expression across tissues
and target more genes than younger miRNAs.
Altogether, our analyses reveal consistent relationships
between miRNA evolution, function, and disease.

Results

The phylogenetic age distribution of human miRNAs

We computed the phylogenetic age of 1025 human miR-
NAs from miRBase by applying a modified version of
ProteinHistorian [23] to all annotated miRNAs from a
set of 146 species (Fig. 1; Additional files 1 and 2). We
found that, consistent with previous work, the majority
of human miRNAs are young: 46% are primate-specific
and 14% are human specific (Fig. 2). The most common
origins of miRNAs that have survived to the present are
on the branches leading to the last common ancestors of
all Boreoeutheria—about 100 million years (MY)
ago—and Old World monkeys and apes (Catarrhini; ~20
MY ago). Our data also suggest that the miRNAs origin-
ating on the branches leading to Coelomata and Verteb-
rata comprise most of the ancient human miRNAs.

To evaluate whether the timing and dynamics of hu-
man miRNA emergence mirrored that of protein-coding
genes, we compared the distribution of miRNA ages to
protein ages computed over a similar set of species.
Compared to miRNA ages, the protein age distribution
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Fig. 2 Human miRNAs are younger than protein coding genes. This figure compares the age distribution of human miRNAs (purple) and genes
(green). The evolutionary origins of human miRNA are significantly younger than genes (P = 2.5e-300, Mann-Whitney U test). Human miRNA are
also significantly younger than the genes they target (blue). Note that PC genes were not assigned to several branches (Hominidae, Simiiformes,
Boreoeutheria, and Vertebrata) due to fewer species being present in the gene dataset. The lower resolution for gene ages does not influence
our conclusions, because the genes are assigned the lower bounds on their ages

is significantly shifted toward ancient origins (Fig. 2;
P =2.5e-300, Mann-Whitney U test). The average age
of human miRNAs in our dataset is 169.9 MY while
the average age for human proteins is 1195.1 MY.
This is not surprising given that proteins could have
origins in the last common ancestor of all life while
miRNAs are a more recent evolutionary innovation.
Nonetheless, the miRNAs are dramatically more likely
to have recent origins.

Older miRNAs are associated with more diseases than
younger miRNAs

Using 383 miRNA-disease associations taken from the
Human microRNA Disease Database (HMDD) [8], we
explored the relationships between the age of a human
miRNA and its disease associations. Overall, 52% of hu-
man miRNAs are associated with at least one disease.
The age of a miRNA is significantly positively correlated
with its number of disease associations (Fig. 3;
Spearman’s p =0.78; P=7.4e-103). On average, young
miRNAs are associated with very few (<10) diseases,
while the oldest miRNA are associated with many (~30)
diseases. These results include all miRNAs, but the
trends were similar when only disease-associated miR-
NAs were considered.

The HMDD database contains associations with many
similar diseases, so it is possible that the more fine-
grained coverage of certain disease classes, like cancer,
might bias the number of diseases associated with cer-
tain miRNAs. To account for this, we collapsed cancers

within HMDD and found that miRNA age and number
of disease associations are still significantly correlated
(Additional file 3). To further control for relatedness be-
tween diseases, we mapped each of the HMDD disease
terms to the hierarchical Medical Subject Headings
(MeSH) database. This enabled us to collapse diseases
using MeSH’s hierarchy of disease classes and to com-
pare miRNA-disease relationships at differing levels of
specificity (Additional file 3). At the most general level
of MeSH disease classification, we found an even stron-
ger relationship between miRNA age and number of dis-
ease associations (Spearman’s p = 0.77; P = 2.7e—108).

Diseases differ in the age of their associated miRNAs

The genes associated with different human diseases
often have distinct evolutionary origin profiles; for ex-
ample, genes associated with cancer are enriched for
origins near the development of animal multicellularity
[17, 24]. Motivated by this association between gene
age and disease, we compared the age distributions of
miRNAs associated with 383 diseases to the back-
ground miRNA age distribution. Diseases differ signifi-
cantly in the average age of their associated miRNAs
(Additional file 3). However, as suggested from the fact
that older miRNAs are more likely to be involved in
disease than younger miRNAs (Fig. 3), disease-
associated miRNAs are significantly older than miRNA
not associated with disease (Fig. 4a; median 97.4 vs.
29.6 MY; P = 1.9e-60, Mann-Whitney U test).
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Fig. 3 The number of diseases associated with a miRNA significantly increases with its age. Each box and whisker plot gives the median, upper
and lower quartiles, and 1.5 times the inner-quartile range of the number of diseases associated with miRNAs of each age. The Spearman’s
correlation between miRNA age and the number of diseases is 0.78 (P = 7.4e-103)
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Fig. 4 miRNAs associated with disease are older than expected from the background miRNA age distribution. (@) The median age of the miRNAs
associated with disease is 97.4 MY compared to 269 MY for non-disease miRNAs. This relationship also holds at the individual disease level (Additional
file 3). (b) The median age of the miRNAs associated with hepatocellular carcinoma is 535.7 MY; this is significantly older than expected if they were
randomly drawn from all miRNAs (P = 2.5e-38, Mann-Whitney U test). Cancers are particularly enriched for old miRNA; the miRNAs associated with
80% of all cancers in our dataset are significantly (P < 0.01) older than expected by chance. Asterisks indicate a significant difference in the number of
miRNA associated with disease of a given age than expected (“***" for P < 0.001, “**" for P < 001, and "*" for P < 0.05)
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Tested individually, 211 out of 383 diseases, including
many cancers, are associated with miRNAs that are sig-
nificantly older than the background of all miRNAs
(P < 0.01). Of these “older” diseases, 48% were cancers,
comprising 80% of all cancers in our dataset. For
example, the miRNAs associated with hepatocellular car-
cinoma had a median age of 535.7 MY; this is signifi-
cantly older than expected from the miRNA background
(Fig. 4b; P=2.5e-38). Consistent with the enrichment
observed in previous studies of the association of gene
age with cancer [24], cancer miRNAs are enriched for
origins on the branch that contains the ancestor of all
animals, as well as several older branches.

Older miRNAs target more genes than younger miRNAs
To explore the potential causes of increased disease asso-
ciation among older miRNAs, we evaluated the relation-
ship of other functional attributes of miRNAs with their
ages. miRNAs regulate the translation of specific target
genes in certain tissues and contexts; thus, we quantified
the association between the ages of miRNAs and their
known targets and contexts of activity.

As expected from the increasing disease association with
age, we found a correlation between the age of a human
miRNA and its number of validated gene targets from
miRTarBase [25] (Spearman’s p =0.29; P =2.7e-16). This
suggests that older miRNAs tend to play more functional
roles, and consequently, provide more opportunities for
disrupted activity to lead to disease. There is also a modest
relationship between the pairwise similarities of miRNA
target gene profiles and age (Spearman’s p = 0.17; P~ 0).

The vast majority of miRNAs target genes that are
older than they are. miRNAs are younger than 92.5% of
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their target genes on average (Fig. 5). This is not sur-
prising, given that miRNAs are significantly younger
overall than genes (Fig. 2); however, miRNAs are even
younger than their target genes than would be expected
based on the difference in age distributions (P < 0.001,
permutation test). Thus, miRNAs mainly target genes
that were in existence at the time of their origin. How-
ever, beyond this general trend, miRNA ages were only
weakly associated with the average age of their targets
(Spearman’s p = 0.07; P = 0.04).

Older miRNAs are more broadly expressed than younger
miRNAs

We next examined the relationship between miRNA
evolutionary age and tissue expression across 20 human
tissues. miRNA age is significantly correlated with the
breadth of expression across tissues (Fig. 6; Spearman’s
p =0.51, P =8.8e-52). Stratifying old and young miRNAs
revealed that old miRNAs are significantly more broadly
expressed (P = 8.8e—27, Mann-Whitney U test). Further-
more, young miRNAs vary widely in their patterns of ex-
pression across tissues, while older miRNAs are
generally expressed in many tissues (Fig. 6). As a whole,
these findings are consistent with the disease association
and gene target results in suggesting that older miRNAs
have many potentially pleiotropic functions and influ-
ence diverse phenotypes, while younger miRNAs are
often, but not always, restricted to a subset of tissues.

Evolutionarily related miRNAs are more similar in their
functional dynamics and disease associations

miRNAs can be created from existing miRNAs, e.g., via
duplication, or de novo from previously non-coding
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Fig. 5 miRNAs are younger than their protein-coding gene targets. This histogram gives the number of human miRNAs (y-axis) for which a given
fraction of their gene targets are younger than it (x-axis). On average, 92.5% of a miRNA’s gene targets are older than the miRNA itself; this is
significantly more than would be expected from the differences in age distribution between miRNAs and genes (P < 0.001, permutation test). In
the most common scenario, a miRNA is younger than all of its target genes
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sequences. The former process has created many
“families” of evolutionarily related miRNAs that share
common ancestral sequences and are often co-located in
the genome [10, 15, 26]. To incorporate this dimension
into our analyses, we evaluated our previous results in
the context of human miRNA family memberships
derived from miRBase.

We first examined the phylogenetic ages of miRNAs
in families and found that they differ from those of hu-
man “singleton” miRNAs without other family members
in the human genome (Additional file 4). The 332 miR-
NAs in families are generally older than the 693 single-
tons (89.1 MY vs. 29.6 MY, P =4.6e-5, Mann-Whitney
U test). However, 68% of miRNA families were primarily
composed of young miRNAs. To test whether these dif-
ferences in evolutionary conservation held at the
sequence level as well, we compared PhastCons verte-
brate evolutionary conservation scores for both sets of
miRNAs. Family miRNAs are also more conserved at
the sequence level than singletons, with an average
PhastCons score of 514.0 compared to 473.4 (P = 2.5e—4,
Mann-Whitney U test). There was no relationship, how-
ever, between the sizes of miRNA family clusters and
their levels of conservation.

To evaluate functional similarities within miRNA fam-
ilies compared to human singleton miRNAs, we com-
puted the Jaccard similarity of the expression, gene
target, and disease profiles of miRNAs in the same fam-
ily and between singletons (Fig. 7a-c). miRNAs in the

same family are significantly more similar in their tissues
of expression, gene targets, and associated diseases than
both miRNA singletons (P =9.6e-248, P~0, and P~0,
respectively, Mann-Whitney U test) and pairs of miRNAs
in different families (P = 1.3e-200, P~ 0, and P~ 0).

Furthermore, miRNAs in families, as a whole, are
expressed in more tissues, feature more regulatory tar-
gets, and are implicated in more diseases than singletons
(Fig. 8a-c; P=1.8e—03, 3.8e—15, and 2.1e—28, respect-
ively; Mann-Whitney U test). This suggests a greater
functional impact for miRNAs with multiple evolution-
arily related human family members.

Several of our previous analyses demonstrated that the
evolutionary age of a miRNA is often indicative of its
functional attributes. Since family miRNAs are, as a
group, older than miRNA singletons (Additional file 4),
we evaluated whether the differences between family
miRNAs and singletons hold when stratifying by age. Re-
peating the functional similarity analyses stratified by
age did not change the results; miRNAs within the same
family are consistently more functionally similar to each
other in their tissue, gene target, and disease profiles
than miRNA singletons are to one another and miR-
NAs in different families are to one another (Fig. 7e-f;
P < 2e-16 for each, stratified Mann-Whitney U test).
However, although our findings comparing family miR-
NAs to singletons without respect to age suggested that
miRNAs within the same family are more functionally
important, stratifying by age revealed that these
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differences are inconsistent and less significant within
miRNA of the same age (Fig. 8d-f; P =0.067, 7.4e-05,
and 1.5e-04, stratified Mann-Whitney U test). This
suggests that the greater functional impact of family vs.
singleton miRNAs is partially driven by the fact that
family miRNAs are older than singleton miRNAs.

In addition to comparing the number of gene targets
for family and singleton miRNAs, we examined the
functional roles of their gene targets. An average of 5%
of gene targets associated with a family miRNA have
transcription factor activity, compared to an average of
3.5% of singletons’ targets. This finding supports the
greater functional influence of family miRNAs. It also
suggests that miRNAs may target transcription factors
less often than expected by chance.

The genomic context and origins of old and young miRNAs
To explore whether genomic context mediates the func-
tional roles of miRNAs of different ages, we intersected

all miRNAs with human gene models. Overall, 38% of
the miRNAs studied are located in introns. Old miR-
NAs are slightly less like to be located in introns than
young miRNAs (33% vs. 40%). However, the difference
is more pronounced when comparing family and
singleton miRNAs; only 26% of family miRNAs are in
introns, while 44% of singleton miRNAs are intronic.
This suggests that there may be pressure against the
formation and expansion of miRNA families in introns.
Indeed, 33% of family miRNAs located in intronic
regions are associated with disease, while only 15% of
young miRNAs located in introns are disease-
associated.

Precursor miRNAs (pre-miRNAs) are enriched for
regulatory features, such as transcription factor binding
sites (TFBS) [27]. We tested whether this enrichment
varied by the age of the miRNAs. Old miRNAs are more
likely to contain TFBS in their precursor sequences than
young miRNAs. The average age of TFBS-associated
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miRNAs is 478.6 MY compared to an average of 169.9
MY across all miRNAs.

miRNAs are commonly created from sequences
derived from transposable elements (TEs) [28]. Given
that TEs make up a large fraction of the human gen-
ome and that TE-derived sequences are often young
[29, 30], we hypothesized there might be differences
in the age distribution of TE-derived and non-TE-
derived miRNAs. To test this, we analyzed the asso-
ciation of miRNAs with annotated TEs in the human
genome. Indeed, miRNAs that overlap annotated TE-
derived sequences are significantly younger than non-
TE-derived miRNAs (Additional file 5; average age
47.3 vs. 223.0 MY). Collectively, these results argue
that old miRNAs have a different genomic distribu-
tion and functional characteristics than young miR-
NAs, and that this influences their propensity to
cause disease.

Evaluating trends in miRNA evolution and emergence
across species is challenging due to lack of data
To evaluate if the patterns of miRNA emergence ob-
served in human were conserved across other species
and clades, we analyzed the ages for all annotated miR-
NAs from miRBase. We computed the ages of 12,952
miRNAs across 146 species. (We excluded 29 species
available in miRBase due to a lack of TimeTree data.)
Over all miRNAs, the average age was 443.0 MY.
While most miRNAs present in human were young—or-
igins in the Homo, Hominidae, Catarrhini, and
Boreoeutheria clades—the majority of all miRNAs
present in miRBase were found to be older, originating
on the branches leading from Boreoeutheria, Vertebrata,
and Coelomata. This trend is likely due to the less com-
prehensive characterization of miRNAs in non-human
species and the use of known human miRNAs to anno-
tate other genomes. For instance, the number of
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miRNAs annotated in a species is significantly
correlated with the percentage of young miRNAs
(Spearman’s p = 0.68, P = 4.1e-06; see Additional file 6).
This suggests that many clade-specific miRNAs are
missing from the dataset. However, the peak in miR-
NAs originating in the Boreoeutheria clade in both the
human and 146 species datasets suggests that miRNAs
from this clade play key regulatory roles, consistent
with previous hypotheses about the importance of
miRNA in driving the evolution of vertebrate complex-
ity [31, 32].

Discussion

The phylogenetic age of a genetic element can provide
insight into its functional significance. For example,
older protein coding genes are more likely to be involved
with disease than their younger counterparts [16, 17].
miRNAs evolve under significantly different functional
and temporal dynamics than protein-coding genes; they
turnover more rapidly and are significantly younger than
genes [18, 19]. Nonetheless, we demonstrated that, as
for genes, there is a strong correlation between miRNA
age and disease association. The greater number of dis-
eases associated with older miRNAs compared to youn-
ger miRNAs argues that they are more likely to regulate
critical functional pathways. (However, many young
miRNAs also contribute to disease [7].) Evaluation of
miRNAs associated with individual diseases reinforced
the similarity of the evolutionary histories of miRNAs
associated with disease and the histories of disease
genes. For example, many diseases, such as cancers, that
have been associated with primarily older genes [24],
also are influenced by older miRNAs.

Consistent with the greater association of older
miRNA with disease, we found that older miRNAs are
generally expressed in more tissues than young miRNAs,
and older miRNAs are also associated with more gene
targets. Older miRNAs are also generally broadly
expressed, while in contrast, younger miRNAs exhibit
variation in the number of tissues in which they are
expressed, with some broadly expressed and others
tissue-specific (Fig. 6). The enrichment for TEBS sites in
the pre-miRNA sequence of older miRNAs compared to
younger miRNAs is also suggestive of their robust regu-
latory role and may support a feedback mechanism that
enables their functions in developmental programming
[33, 34]. These results argue that old miRNAs generally
have greater functional impact than young miRNAs.

Our findings that the breadth of a miRNA’s expression
across tissues and its number of gene targets are corre-
lated with age are consistent with several recent reports
and a model in which miRNAs increase in breadth of
expression as they age [21, 22, 35]. However, it is also
possible that broadly expressed miRNAs are more likely
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to be maintained over time due to their larger regulatory
domains. Indeed, other studies have argued for increas-
ing refinement of miRNA targeting and function with
age [5, 22]. These differences are due, at least in part, to
our incomplete knowledge of miRNAs and different
methods for identifying targets. For example, many of
these investigations into miRNA targeting and its effects
on cellular function have relied on computational pre-
dictions of miRNA-target pairs. Unfortunately, target
prediction algorithms have not achieved sufficient accur-
acy and consistency to enable solid conclusions [3, 21].
Thus, we analyzed only experimentally validated targets,
which are certainly incomplete. It is also possible that
computational and experimental target prediction
methods have different biases with respect to function-
ally relevant targets vs. unconstrained target interactions.
As such, stronger curation efforts and algorithm devel-
opment are needed to consolidate the breadth of avail-
able miRNA data and enable replicable and consistent
studies of the mechanics of miRNA-target acquisition.
In aggregate, we argue that human miRNAs gain func-
tionally relevant targets as they age—usually older gen-
es—but many additional factors, such as the tissues of
expression and the presence of evolutionarily related
family members, influence the diversity of their
functional interactions.

Evolutionarily related human miRNAs are more simi-
lar to one another in their tissue expression profiles,
gene targets, and disease associations than the similarity
of pairs of singleton miRNAs and miRNAs in different
families, regardless of age. These results are relevant to
recent studies of the functions and evolutionary dynam-
ics of physically clustered miRNA [10, 15, 26], since
many of the constituent members of clusters are created
via duplication. For example, a simple comparison of
family and singleton miRNAs that ignored their age sug-
gested that miRNAs from families have a greater func-
tional influence; however, stratifying miRNAs by age
revealed that these trends are not consistent over evolu-
tionary time (Fig. 8) and that the apparent difference
was due to the older average age of family miRNAs.

The genomic context of a miRNA is linked to its
evolutionary history and can be informative about its
functional significance. For example, intronic miRNAs
may serve as negative feedback regulators of their con-
stituent genes [36, 37]. This association is particularly
relevant when considering family miRNAs, for which
negative regulatory effects might be amplified due to
similar seed sequences. This possibility is supported by
our findings; fewer family miRNAs are located in introns
compared to singletons, and family miRNAs in introns
have a greater propensity to be associated with disease.

Furthermore, there is also growing evidence that TEs
have played a key role in miRNA biogenesis and the



Patel and Capra BMC Genomics (2017) 18:672

evolution of gene regulation [28, 30, 34]. For example,
the majority of primate-specific regulatory sequences as
mapped by DNase I hypersensitivity overlap sequences
derived from TEs [29]. Our results support a similar
conclusion for miRNAs; TE-derived miRNAs are signifi-
cantly younger than non-TE miRNAs (Additional file 5).

Expanding analysis of miRNA evolutionary and func-
tional dynamics to non-model species will be challen-
ging due to our incomplete knowledge of the miRNAs
present in most species. There are 1025 human miRNAs
annotated in the miRBase dataset analyzed here, but the
average number of miRNAs annotated per species is
88.7. Analyses of miRNAs derived from RNA-seq data
from several tissues across different mammals revealed
an expansion of the miRNA complement in mammals
[18], but this is unlikely the driver of the large difference
in miRNA number. Indeed, we identified a strong correl-
ation between the number of miRNAs with origins in
the lower quartile of the possible age range and the total
number of miRNAs annotated for a given species
(Additional file 6; Spearman’s p = 0.68, P = 4.1e—06). The
differences in the age distributions of miRNAs across
species observed in our study highlight the need for
more comprehensive identification of the miRNAs
encoded in different genomes; this will be critical for
future evolutionary analyses of miRNA origins and
function.

Conclusions

Our analyses illustrate the importance of considering
miRNA origins and genomic context in comparisons of
miRNAs and their functions. miRNAs retain consider-
able untapped potential as disease markers and avenues
for therapeutic intervention in combatting human dis-
ease, and we believe that integrating analysis of their
evolutionary histories with traditional molecular and
cellular characterizations will help achieve this goal.

Methods

To compute evolutionary ages for miRNAs and explore
their known associations with disease in humans, we in-
tegrated several datasets and computational tools. In
outline, first, we identified families of evolutionarily
related miRNAs. Next, we determined the phylogenetic
age of miRNAs based on their distribution across spe-
cies. Finally, we obtained miRNA-disease, miRNA-target,
and miRNA-tissue expression data and examined these
relationships in the evolutionary context.

miRNA families and phylogenetic trees

Data for all miRNAs were downloaded from miRBase
v21, an online database of annotations and sequences
for published miRNAs across many species [1, 38]. We
extracted all species for which miRNA were annotated
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by miRBase and used the phyloT web server to generate
a Newick format phylogenetic tree for 175 species with
miRNA data [39]. Annotation of miRNAs to evolution-
arily related families also came from miRBase. For
family-based analyses, we report results for miRNA fam-
ilies with more than four members, since many families
with fewer members lacked functional data; however, in-
cluding all families did not influence our main
conclusions.

Assigning evolutionary ages to human miRNAs
ProteinHistorian (PH) is a web server and command
line tool we previously developed to determine the
evolutionary ages for eukaryotic proteins and to test
for enrichment of specific evolutionary origins in pro-
tein sets of interest [23]. Using families of homologous
proteins and a phylogenetic tree that captures the evo-
lutionary relationships of the species under consider-
ation, PH provides several algorithms for estimating
the ancestral branch on which each protein emerged
based on its presence or absence across species. To
calculate miRNA ages, we adapted the PH approach to
analyze groups of evolutionarily related miRNAs across
species obtained from mirBase. Although PH was ini-
tially designed to determine eukaryotic protein ages,
its modular design made it straightforward to adapt to
this new setting. We employed the Dollo parsimony
approach in our adapted PH to estimate miRNA ages
based on growing evidence from the literature that hu-
man miRNAs are only rarely lost once permanently
added to a lineage’s genome [40, 41]. Applying this ap-
proach to 286,645 miRNAs across all species consid-
ered from miRBase, we estimated the branch of the
phylogenetic tree on which each first appeared. To
calibrate the timing of each of these evolutionary
branches, we used expert estimates from TimeTree for
the divergence of different species [42]. When expert
estimates were not available from the TimeTree, the
average of published estimates was used. We refer to
miRNAs less than 100 million years old as “young” and
those over 100 million years old as “old” or “ancient”.
We compared the miRNA ages to the ages of human
genes calculated by PH using the asymmetric Wagner
parsimony criteria over alignments of proteins from 48
species [23].

Analyzing the relationship between miRNA age and
disease association

We downloaded miRNA-disease associations from the
Human microRNA Disease Database version 2
(HMDD), last updated in June of 2014 [8]. HMDD as-
sociated 578 human miRNAs with 383 diseases. We
evaluated the correlation of the age of each miRNA an-
notated in miRBase with the number of its associated
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diseases in the HMDD with Spearman’s rank correl-
ation. Since the HMDD disease set contained many
similar diseases, we also computed a “reduced” disease
set for each miRNA in which cancers were merged.
The reduced set contained 302 entries. We also
mapped diseases to their 2017 medical subject head-
ings (MeSH) vocabulary from NCBI, and the associ-
ated hierarchy was used to collapse diseases at
different levels of specificity. Disease names and
mappings are given in Additional file 3.

In order to evaluate the similarity of the diseases as-
sociated with different miRNA families, we associated
each miRNA with a binary vector indexed by disease
in which a “1” indicated association with the disease,
and “0” indicated no association. We then computed
the Jaccard similarity index between the binary vectors
of miRNAs within the same age class. This method
was extended when comparing the disease profiles of
miRNA families and miRNA singletons. For all age-
stratified analyses comparing family and singleton
miRNAs, we used the stratified Mann-Whitney U test
as implemented in the sanon package in the R
programming language [43].

miRNA targets and their evolutionary histories

We downloaded 319,690 experimentally-verified miRNA
target interactions from miRTarBase version 21 in May
2016 [25]. In order to evaluate how miRNAs related to
their targets in terms of evolutionary history, we down-
loaded previously computed evolutionary ages for the
targets from the PH database [23]. We identified human
genes with transcription factor activity using annotations
from the Gene Ontology Consortium downloaded on
January 7, 2017 [44]. To evaluate whether relationships
between the age of miRNA and their target genes were
simply a consequence of the differences in the age distri-
butions of miRNAs and genes, we performed a permuta-
tion analysis by randomly shuffling the assignments
between miRNAs and targets 10,000 times. A binary
Jaccard similarity approach similar to the one described
above was also employed in evaluating relationships
between miRNAs and their targets.

Expression patterns of miRNAs in different tissues

We downloaded miRNA expression data in 20 tissues
from miRmine in May 2016 [45]. Since the miRmine
database featured multiple profiles for each tissue pre-
sented, we consolidated the expression data within each
tissue to produce a summary for each miRNA indicating
the presence or absence of a miRNA in a given tissue.
The tissue expression profiles were compared with the
Jaccard similarity index.
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Genomic attributes of miRNAs stratified by age and
disease class

Intron and exon boundaries were taken from the
knownCanonical track of the UCSC Genes human gene
set from the UCSC Genome Browser [46]. Evolutionary
sequence conservation was evaluated using the Phast-
Cons elements computed over a multiple sequence
alignment of 99 vertebrate whole genome sequences
with the human genome (phastConsElements100way)
[47]. We downloaded transcription factor binding sites
in miRNA precursor sequences and TE associations with
annotated miRNAs from previous studies [27, 48].

Additional files

Additional file 1: miRBase Species List. List of all species used in our
phylogenetic analysis, along with their respective miRBase codenames
and number of annotated miRNAs. (XLSX 35 kb)

Additional file 2: Human miRNA Ages. The ages of all human miRNAs
computed by ProteinHistorian, with timing estimates in millions of years
(MY) based on calibrations from TimeTree. (TXT 18 kb)

Additional file 3: miRNA Disease Associations. List of diseases compiled
from HMDD, the number of human miRNAs associated with each
disease, and the corresponding MeSH term for each disease. The file also
includes average and median ages for disease miRNAs and Mann-
Whitney U statistics comparing the ages of the miRNAs associated with
each disease to the background set of all miRNAs. The “Collapsed”
column indicates if the disease was collapsed into a single disease in the
cancer-control analysis. (XLSX 33 kb)

Additional file 4: The phylogenetic age distribution of family miRNAs
versus singletons. The median age of all family miRNAs (89.1 MY) is
significantly older than the median age of singletons (29.6 MY; P=4.6e-5,
Mann-Whitney U test). (PDF 21 kb)

Additional file 5: miRNAs derived from transposable elements (TEs) are
significantly younger than non-TE-derived miRNAs. TE-derived miRNAs
have an average age of 47.3 MY, while the non-TE-derived miRNAs have
an average age of 223.0 MY. (PDF 13 kb)

Additional file 6: The number of miRNAs annotated in a species is
significantly correlated with the percentage of young miRNAs in the
species. Over 146 species, we observed a Spearman’s correlation of 0.68
(P=4.1e-06) between the number of annotated miRNAs and the
percentage of young miRNAs in the species. This relationship is likely the
result of limitations in current knowledge of miRNA sequences and
annotations. In this analysis, young miRNAs were defined as those
younger than 25 % of the overall age range. See Additional file 1 for the
list of all species considered and miRNA counts. (PDF 15 kb)
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