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ABSTRACT

Motivation: Methylation of CpG dinucleotides is a prevalent epigen-

etic modification that is required for proper development in verte-

brates. Genome-wide DNA methylation assays have become

increasingly common, and this has enabled characterization of DNA

methylation in distinct stages across differentiating cellular lineages.

Changes in CpG methylation are essential to cellular differentiation;

however, current methods for modeling methylation dynamics do not

account for the dependency structure between precursor and de-

pendent cell types.

Results: We developed a continuous-time Markov chain approach,

based on the observation that changes in methylation state over tissue

differentiation can be modeled similarly to DNA nucleotide changes

over evolutionary time. This model explicitly takes precursor to des-

cendant relationships into account and enables inference of CpG

methylation dynamics. To illustrate our method, we analyzed a high-

resolution methylation map of the differentiation of mouse stem cells

into several blood cell types. Our model can successfully infer unob-

served CpG methylation states from observations at the same sites in

related cell types (90% correct), and this approach more accurately

reconstructs missing data than imputation based on neighboring

CpGs (84% correct). Additionally, the single CpG resolution of our

methylation dynamics estimates enabled us to show that DNA

sequence context of CpG sites is informative about methylation dy-

namics across tissue differentiation. Finally, we identified genomic

regions with clusters of highly dynamic CpGs and present a likely

functional example. Our work establishes a framework for inference

and modeling that is well suited to DNA methylation data, and our

success suggests that other methods for analyzing DNA nucleotide

substitutions will also translate to the modeling of epigenetic

phenomena.

Availability and implementation: Source code is available at www.

kostkalab.net/software.

Contact: tony.capra@vanderbilt.edu or kostka@pitt.edu

1 INTRODUCTION

DNA methylation is a common epigenetic modification essential

to organism development (Smith and Meissner, 2013). In verte-

brates, DNA is most commonly methylated at the fifth carbon

position on cytosine nucleotides (5mC) that are followed by a

guanine, so-called CpG sites. A family of three DNA methyl-

transferase enzymes (DNMT1, DNMT3A, DNMT3B) is respon-

sible for the establishment and maintenance of methylation state

at the millions of CpG sites in most mammalian genomes (Smith

and Meissner, 2013). Recently, the ability to perform genome-

wide assays of the methylation state of individual CpGs has

become a reality because of advances in microarray and DNA

sequencing technology. Several approaches that vary in their

accuracy, biases, coverage and cost are commonly used; see

Laird (2010) for a detailed review of current methods.

Systematic screening of DNA methylation across tissue differ-

entiation and development has improved our knowledge of its

role in these processes (Bock et al., 2012; Xie et al., 2013). The

methylation profile of the mammalian genome is largely stable,

but the methylation of specific genomic regions changes dynam-

ically across development, and different cellular lineages have

unique methylation profiles (Ziller et al., 2013). Additionally,

the DNA methylation state nearby a gene’s transcription start

site (TSS) correlates with gene expression (Xie et al., 2013), and

the correct orchestration of methylation changes is essential for

proper cellular differentiation. Aberrant methylation changes

may lead to tumorigenesis and other diseases (Bergman and

Cedar, 2013; Hansen et al., 2011; Portela and Esteller, 2010;

Tost, 2010).
Studies assaying DNA methylation often focus on the

comparison of two types of conditions, like tumor versus

normal tissue (Nordlund et al., 2013), or stem cells versus line-

age-committed cells (Xie et al., 2013). However, the natural pro-

cess of cellular differentiation and development has an essentially

tree-like topology, in which precursor cell types are connected to

their descendants by edges, thereby forming a so-called lineage

tree (Frumkin et al., 2005). For example, Figure 1 depicts a lin-

eage tree for blood cell differentiation, where DNA methylation

has been assayed in cell types represented by nodes (Bock et al.,

2012). Independent pairwise comparisons cannot accommodate

this structure.
To address this issue, we introduce an approach to model

methylation state changes between cell types that explicitly

takes dependencies induced by the lineage tree into account. In

this setup, modeling methylation changes over developmental

time is in many ways reminiscent of describing DNA nucleotide

changes over evolutionary time (Fig. 1). As a result, we adapt

established continuous-time Markov models of sequence evolu-

tion to fit this task.
In addition to accommodating cell lineage relations during

development, our approach has the benefit that it works at

single CpG dinucleotide resolution and does not require the spa-

tial aggregation of methylation measurements across the genome.

Finally, the analogy with models for DNA sequence evolution

provides intuitive means to handle missing data, which are

common in many DNA methylation datasets. During parameter*To whom correspondence should be addressed.
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estimation,missing data can bemarginalized over, and the equiva-

lent of joint ancestry reconstruction (Pupko et al., 2000) allows

efficient inference of the most likely methylation states for unob-

served data in context of the lineage tree.
As an illustration of our approach, we analyzed methylation

data collected across the cell lineage tree in Figure 1 from Bock

et al. (2012). On this dataset, our method enabled the accurate

reconstruction of missing methylation states. The single CpG

resolution of our analysis allowed us to discover that the identity

of neighboring dinucleotides is strongly correlated with CpG

methylation dynamics at many sites in the mouse genome.

Finally, using our predictions of CpG methylation variability,

we identified a cluster of highly dynamic CpG sites that show

evidence of enhancer activity in blood cells.

2 METHODS

2.1 Modeling methylation changes across tissue

differentiation

We model the dynamics of DNA methylation across cellular differenti-

ation using an approach motivated by phylogenetic models. In the phylo-

genetic context, a continuous time Markov chain is used to quantify

DNA sequence changes between species over a known species tree.

Intuitively, we adapt this approach and replace the species tree with

a cell lineage tree and the four-state alphabet of DNA with an alphabet

based on methylation status. In our model, the cell lineage tree consists

of nodes that correspond to cell types and edges indicate precursor–

descendant relationships. For example, the lineage tree shown in

Figure 1 traces the differentiation of adult hematopoietic stem cells

(HSCs) through several intermediate states into different terminally

differentiated blood cell types. To describe methylation patterns, we

define three discrete methylation states fu;p;mg, corresponding to

unmethylated, partially methylated and methylated CpGs dinucleotides,

respectively.

To model transitions between CpG methylation states along edges of

the cell lineage tree, we associate each node with a discrete random

variable Xi (1 � i � N, assuming N nodes), which is dependent on its

parents (i.e. its direct precursor cell types) in the lineage tree. As in

DNA sequence evolution models, we use a continuous time Markov

chain to describe this dependency structure. Specifically, if nodes i and

j are connected in the lineage tree by an edge i! j of length t, then the

probability of the methylation state at node j being l conditional on node i

being in methylation state k is given by

PðXj=ljXi=kÞ=½expmðQtÞ�kl

for k; l 2 fu;p;mg (Guttorp and Minin, 1995).Q is a 3� 3 rate matrix (or

generator), and expm denotes the matrix exponential. We assume a time-

reversible Markov chain with equilibrium frequency �, which impliesQ is

fully parameterized by three non-negative rate parameters, faig, and �.

(The number of expected transitions along an edge is ð�1Þ
P

i �iQiit, and

therefore, we will enforce ð�1Þ
P

i �iQii=1 and report t in units of

expected methylation state transitions.) In summary, our model is para-

meterized by #, which consists of the topology of the lineage tree (which

we assume is fixed, known and consists of N nodes and E edges),

the branch lengths ftig
E
i=1, the equilibrium frequencies f�ig

3
i=1 and the

rate parameters faig
3
i=1. The likelihood of an observed methylation pat-

tern x=fxig
N
i=1 is then

Pðxj#Þ=
YN

i=1

P#ðXi=xijXpaðiÞ=xpaðiÞÞ

where paðiÞ is the parent of node i in the lineage tree. For the root node,

we have PðX=iÞ=�i, and assuming independence between methylation

patterns at different CpG sites, we have for the likelihood of all observed

patterns D=fxig
L
i=1 (assuming there are L CpG sites):

Lð#Þ=PðDj#Þ=
YL

i

Pðxij#Þ: ð1Þ

In contrast to most applications dealing with DNA sequence changes,

non-leaf nodes can be observed in our setting. We handle missing data by

marginalization, i.e. summation over all possible configurations of

unobserved nodes in the lineage tree, which can be done efficiently

(linear in the number of tree nodes) via the elimination algorithm

(Siepel and Haussler, 2005). Maximum likelihood parameter estimates

are then obtained by maximizing Equation (1) over branch lengths, equi-

librium frequencies and rate parameters. In summary, we have adapted a

well-known class of models that is typically used in the context of DNA

sequence evolution to model the dynamics of methylation changes during

tissue differentiation.

2.2 Integrating rate heterogeneity

2.2.1 Modeling rate heterogeneity The approach described so far

models methylation dynamics using the same process at all CpG sites in

the genome, and thereby assumes homogeneity of methylation dynamics.

This assumption is not always reasonable. For instance, CpGs located in

CpG islands have a propensity to be unmethylated (compared with other

CpG sites), and a disposition to stay in that state (Jones, 2012).

To address this issue, we incorporate rate heterogeneity into our model

using a mixture modeling approach similar to phylogenetic models for

DNA changes under heterogeneous substitution rates. First, we assume a

certain fraction (�) of CpG sites to be invariant, i.e. they do not change

their methylation state during tissue differentiation. For the ð1� �Þ

fraction of variable CpG sites, we assume M different equiprobable rate

categories frmg
M
m=1 such that the probability of methylation pattern xi is

now

Pðxij ~#Þ=�Pðxijr0; #Þ+ð1� �Þ
1

M

XM

m=1

Pðxijrm; #Þ;
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Fig. 1. CpG methylation dynamics can be modeled with an approach

inspired by phylogenetic analysis of nucleotide substitutions. Left: A lin-

eage tree of sampled blood cell types during hematopoietic differentiation

with stem cells on top and terminally differentiated cells on the bottom

(see Section 2.4 for details). The lineage tree takes the role played by the

species tree in the phylogenetic context. Right: Examples of methylation

patterns across differentiation (columns) for CpG sites at different gen-

omic locations. Each row corresponds to a cell type in the linage tree on

the left. The white block represents missing data. The discretized methy-

lation states are analogous to DNA sequence data
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where we have used the ‘rate category’ r0 to denote invariance and ~# to

denote the new parameter set. For the invariant term on right side above,

Pðxijr0; #Þ=pk if all methylation states in xi are k (for k 2 fu;p;mg) and

zero otherwise. For the variable part, we have Pðxijrm; #Þ=Pðxij#ðmÞÞ,

where we use Equation (1), but with all branch lengths in # scaled by the

factor rm. The scale factors frmg are determined by a Gamma distribution

with shape parameter � and scale parameter 1/� (setting the scale

parameter to 1/� ensures that the Gamma distribution has a mean of

one). Next, the probability density function of the Gamma distribution is

discretized by splitting its domain into M equal-mass bins and setting rm
equal to the mean conditional on binm. Thus, a single positive parameter

� determines all M rates. The additional parameters to account for rate

variation between CpG sites are the fraction of invariant sites �, the

frequencies of invariant states fpig
3
i=1 and the shape parameter � of the

Gamma distribution. Maximum likelihood estimates are again obtained

considering CpG sites as independent. In summary, we use the �+ I

model (Gu et al., 1995) to account for rate heterogeneity across different

CpG sites.

2.2.2 Assigning CpG sites to rate categories To assign CpG sites to

rate categories we use an empirical Bayes approach (Galtier et al., 2005).

Let #̂ denote the maximum likelihood estimates for ~#. We assign methy-

lation pattern xi to rate category m̂=argmaxmPðxijr̂m; #̂ÞPðmÞ=Pðxij#̂Þ,

where PðmÞ=�̂ for m=0 and PðmÞ=ð1� �̂Þ=M for 1 � m �M.

2.3 Reconstructing missing data

Our model of DNA methylation dynamics can reconstruct missing or

unobserved methylation states in a cell type. Intuitively, for a given

CpG site, nearby cell types in the lineage tree carry information about

its likely methylation state. We quantify this relationship using joint max-

imum likelihood ancestry reconstruction (Pupko et al., 2000). In essence,

assume methylation pattern xi contains one or more missing values (i.e.

unobserved methylation states). Further assume the empirical Bayes pro-

cedure discussed above assigns pattern xi to rate category m. Note that

during this procedure missing values in xi had been ‘marginalized out’.

Then, we assign the missing values in xi to the methylation state config-

uration that maximizes the likelihood Pðxijr̂m; #̂Þ. The algorithm of

Pupko et al. (2000) is linear in the number of tree nodes, enabling efficient

reconstruction of missing methylation states.

This reconstruction strategy shares methylation state information for a

CpG site ‘vertically’ across the lineage tree and is complementary to

approaches leveraging ‘horizontal’ correlations between different but

nearby CpG sites across the genome.

2.4 Data sources and processing

Our algorithm requires two inputs: (i) the topology of the lineage tree and

(ii) discrete methylation state data for the stages in the lineage tree at

specific positions along a genome. Missing methylation states are allowed

(see above).

We analyzed DNA methylation maps from 13 cell populations from

stages of a differentiation of adult mouse HSCs to different blood lin-

eages (Bock et al., 2012). The purified cell types were obtained at pro-

gressive levels of differentiation, starting with HSCs, followed by

multipotent progenitor cells (MPP1 and MPP2) and progenitor cells of

the lymphoid (CLP) and myeloid (CMP) lineages. For the lymphoid

progenitors, further differentiated cells included T helper cells (CD4),

T cells (CD8) and B cells (BCELL). For myeloid progenitor cells, the

next stages were granulocyte-monocyte progenitors and megakaryocyte–

erythroid progenitors (MEP); the former was followed by monocytes

(MONO) and granulocytes (GRAN), whereas the latter was followed

by erythrocytes (ERY). The relationships between cell types are summar-

ized in the lineage tree in Figure 1. Bock et al. (2012) generated a

methylation map for each cell type using reduced representation bisulfite

sequencing (RRBS).

We downloaded counts of methylated and unmethylated reads at each

sequenced CpG dinucleotide for the two replicates performed in each cell

type from the Supplementary Materials Web site (http://info.medical-epi

genomics.org/papers/broad_mirror/invivomethylation/) for Bock et al.

(2012). Values for each CpG were averaged over the two replicates for

each cell type (and strand where applicable). Then we discretized the

methylation status into methylated (40.8), partially methylated (between

0.1 and 0.8) and unmethylated (50.1) categories based on the fraction of

methylated reads for the site. Histograms of these values showed clear

peaks at the ends of the spectrum and were similar between replicates. We

defined CpG islands using the cpgIslandExt table for the mm9 build of

the mouse gene from the UCSC genome browser (Kent et al., 2002).

We implemented our algorithms in the R language (R Core Team,

2014). To estimate the parameters of the model described in Section

2.2.1, we used the observed frequencies (excluding CpGs with missing

values) for fpig
3
i=1, and used a box-constaint enabled version of the

limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-

BFGS-B) algorithm to obtain maximum likelihood estimates for all

other parameters. Because we treat CpG positions independently (see

above), the computational complexity of estimating rate categories and

reconstructing missing data over a set of CpG sites scales linearly with the

number of assayed CpGs. Optimizing the likelihood over all CpGs on

Chromosome 1 in the Bock et al. (2012) data (about 6% of the dataset)

took 10min and 15 s on a single core of an Intel(R) Xeon(R) X5690 CPU

with 3.47GHz clock speed.

3 RESULTS

We applied our methylation dynamics model to an RRBS

dataset tracing the differentiation of adult HSCs (Bock et al.,

2012). This study queried a set of over 2 million CpG sites at

different stages during blood lineage differentiation, and the

assayed cell types with their relationships are summarized in

the lineage tree in Figure 1.
We fit a model with four rate categories (three variable and

one invariant) to the discretized methylation status of CpG sites

along each chromosome (Section 2). The maximum likelihood

estimates of the model parameters qualitatively agree across

chromosomes, and the resulting model is consistent with several

previous findings. Invariant CpG sites are more prevalent than

variable sites (Bock et al., 2012; Ziller et al., 2013); 61% of CpGs

are invariant in our analysis, and 13, 12 and 14% fall into the

slow, medium and fast rate categories, respectively. As expected,

the equilibrium distribution for variable states favors methylated

CpGs, i.e. �̂u5�̂p5�̂m for all chromosomes. Contrasting the

dynamics at variable and invariant CpG sites, we find that in-

variant sites are most likely to remain unmethylated during dif-

ferentiation (61%), whereas variable sites are most likely to be in

methylated states (57%). The branch lengths obtained in our

fitted models reflect the number of expected methylation state

transitions between cell types, and we see the longest branch

lengths between MEP and ERY cells and between HSC and

MPP1 cells (t=4.65 and t=0.97 averaged over chromosomes,

respectively). These numbers correspond to an expected fraction

of CpG sites with observedmethylation changes of 24% for MEP

!ERY and of 17% and for HSC!MPP1, taking into account

the prevalence of invariant sites and the different rate categories

for variable sites. This is in qualitative agreement with previous
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results, and it provides a quantitative underpinning of the known
‘methylation divergences’ between these contexts.
In the next three sections, we present examples of how our

modeling approach enables analysis of methylation dynamics
across cellular differentiations.

3.1 Reconstructing unobserved methylation states

Over the 2 079 144 CpG sites assayed in 13 cellular contexts in
the blood differentiation dataset, 5 940 467 of 27 028 872 (22%)
methylation states are missing because of a range of technical

issues (Bock et al., 2012). Given the prevalence of missing data,
we assessed the ability of our model to reconstruct unobserved

values using information from the observed methylation status
of the same sites at other nodes in the lineage tree. Conceptually,
this is akin to the problem of ancestral sequence reconstruction

for DNA substitution models (Pupko et al., 2000), but in the
context of methylation, we also have observed data on internal

nodes of the tree.
For each cell type, we masked 10 000 CpG sites with measured

methylation state, re-estimated model parameters on data miss-

ing the masked methylation states, reconstructed the masked
values as described in the Section 2 and then compared the
reconstructed methylation values with the actual values.

The reconstructed methylation states are generally accurate
(90% correct overall), with some differences in performance be-

tween different cell types (Fig. 2). As expected, the length of the
edges connecting cell types is correlated with the accuracy of the
reconstruction of missing values; the nodes with the longest in-

cident edges in the lineage tree (HSC and ERY) are the most
difficult to reconstruct.
To compare our model’s reconstruction with a baseline

method, we also reconstructed the methylation state of each
masked CpG based on the methylation state of its nearest neigh-

bor (in terms of genomic location) in the same cell type. This type
of reconstruction assumes a ‘horizontal’ (i.e. location-wise)
correlation between methylation states of neighboring CpG

sites, whereas our approach can be viewed as assuming a ‘verti-
cal’ (i.e. progenitor to descendant) correlation between the same

CpG site in neighboring cell types.
Overall, lineage tree-based reconstruction performs signifi-

cantly better than location-based reconstruction (Fig. 2; 90%

correct versus 84% correct; P � 0, binomial test). However, we
note that more sophisticated ‘horizontal’ methods have achieved
higher performance in some contexts; see Section 4.

Stratifying reconstructed methylation states by our inferred
rate categories revealed that, unsurprisingly, lineage tree-based
reconstruction is hardest for ‘fast’ CpG sites, i.e. those in the

fastest rate category according to the empirical Bayes procedure.
Therefore, the lineage tree-based reconstruction approach not

only performs better than a location-based method but also
contributes valuable information about the confidence in the re-
construction result. We anticipate that combining these largely

independent approaches could improve reconstruction further.

3.2 DNA sequence context is correlated with CpG

methylation dynamics

Having established that our approach can successfully recon-

struct unobserved methylation states, we now describe several

analyses that use our model’s estimates of CpG methylation dy-

namics at single CpG resolution. Specifically, we show that out-

side CpG islands, and particularly for CpGs in promoters, the

immediate DNA sequence content around CpG dinucleotides is

correlated with the variability of their methylation state.

3.2.1 Local CpG sequence context correlates with methylation
dynamics outside CpG islands CpG islands are genomic regions

with high CpG dinucleotide frequency, in which methylation

status has been reported to influence gene expression

(Illingworth and Bird, 2009; Jones, 2012). Here we study methy-

lation dynamics by analyzing the rate category that our model

assigns to each assayed CpG dinucleotide.
As expected, we find that invariant CpG dinucleotides are

strongly enriched in CpG islands, and that this enrichment

falls off with increasing distance from the island (Fig. 3a). To

obtain this aggregate view, we split the roughly 16 000 annotated

CpG islands into an equal number of bins and discretized flank-

ing genomic regions into equal-sized non-overlapping tiles. The

averages for corresponding locations across CpG island loci are

shown as points. The strong invariance of CpG islands is in

agreement with the notion that CpG islands tend to retain

their methylated state (Jones, 2012).
Taking advantage of the single CpG resolution of our

approach, we explored whether the enrichment of invariant

CpG dinucleotides is exclusive to CpG islands. We hypothesized

that local CpG content could be important, so we stratified each

CpG dicnucleotide by (i) whether its two neighboring dinucleo-

tides contain none, one or two CpGs and (ii) whether it is located

inside a CpG island. For CpGs without neighboring CpG sites,

those in CpG islands are strongly enriched for invariance over

those outside of CpG islands (factor 1.67), but this enrichment

decreases for CpGs with one or two neighboring CpGs (Fig. 3b).

In other words, outside of CpG islands, local CpG sequence

context is strongly correlated with the absence of methylation

state changes across hematopoietic differentiation.
Next, given the importance of invariant CpGs, we assessed

whether there is a preference for methylated (or partially methy-

lated) states compared with unmethylated states among invariant

CpG sites. We find that invariant CpG sites in CpG islands are

almost always unmethylated (96%), which is expected from
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Fig. 2. Lineage tree-based reconstruction of methylation state is more

accurate than nearest-neighbor-based reconstruction. We masked the

methylation status for 10 000 CpG sites in each cell type and recon-

structed these values using ‘vertical’ information from our lineage tree

model and ‘horizontal’ information from neighboring CpG sites. The

lineage tree approach proved significantly more accurate overall (90%

versus 84%; P � 0, binomial test) and within every cell type except

erythrocytes (P=0.99), which have the longest branch length (p54E-

17 for all other cell types)
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previous analyses (Jones, 2012). However, invariant CpG sites

outside of CpG islands are significantly more likely to be methy-

lated (65% methylated and 28% unmethylated; P � 0, binomial

test). We again hypothesized that adjacent sequence context

could influence methylation at these sites. Figure 3c shows that

invariant CpGs with neighboring CpG dinucleotides outside

CpG islands are more unmethylated compared with their coun-

terparts without neighboring CpG dinucleotides.

3.2.2 Low CpG content promoters are enriched for variable CpG
sites The previous subsection shows that local CpG context

is associated with the dynamics of individual CpG sites in certain

settings. Promoter CpGs are known to be functionally important

and influenced by CpG density, so next we analyzed single CpG

dynamics in promoters with respect to their overall CpG density.

The methylation state of CpGs in gene promoters is associated

with transcription levels (Jones, 2012). In several cell types,

promoter methylation is negatively correlated with gene expres-

sion, and the effect is strongest in promoters with low CpG dens-

ity (Xie et al., 2013). The rate category assignments from our

model enabled us to test whether promoter CpG content is also

correlated with methylation dynamics across hematopoietic dif-

ferentiation. Following Xie et al. (2013), we defined ‘promoters’

as regions 500bp upstream and downstream of TSSs, and we

analyzed CpG sites within this window for 19 244 mouse genes.

We stratified promoters into low and high CpG density groups.

As seen in human data, the CpG density distribution surround-

ing the mouse TSSs has two peaks; one at low (50.034 CpG/bp)

and one at high CpG density (�0.034 CpG/bp).
The low CpG content promoters have a significantly higher

fraction of variable CpG sites compared with the high CpG pro-

moters (Fig. 4; P � 0, chi-squared test). Nearly all (84%) of the

high CpG promoter CpG sites were invariant across the differ-

entiation, whereas only 55% of the low CpG sites were invariant.

This pattern could be driven by the invariance of CpG Islands

(Fig. 3) and their prevalence in high CpG content promoters, but

the effect remained when CpG island sites were removed (76%

versus 54%; P � 0). These results are consistent with the previ-

ous observation that the correlation between methylation state

and gene expression is strongest in low CpG promoters (Xie

et al., 2013).

3.3 Identification of genomic regions with variable

methylation state

The CpG site rate category predictions from our model enable us

to identify genomic regions with frequent methylation state

changes across hematopoietic differentiation. To do this, we dis-

carded CpG dinucleotides in repeat masked regions (rmsk track

for mm9 from UCSC genome browser) and then identified max-

imal subsets in the RRBS data, for which each site is no420bp

from the nearest other CpG in the subset. We further filtered out

short regions (550bp) and focused on regions without evidence

for accelerated substitution rates (average phyloP score from

UCSC genome browser40); this approach leaves 61 980 regions
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Fig. 3. Methylation dynamics are influenced by DNA sequence context

outside of CpG islands. (a) Invariant CpG sites (gray circles) are the most

common category in our analysis, and they are strongly enriched in CpG

islands. The other rate categories (red circles) are roughly equally likely in

and around CpG islands. Each dot represents an average over evenly

sized bins centered on the 16 024 CpG Islands. The red dashed line

gives the sum of the variable categories. (b) The presence of adjacent

CpG sites is strongly correlated with CpG methylation dynamics outside

of CpG islands. The effect of DNA sequence context is much weaker

within CpG islands. (c) Nearly all invariant CpG sites within CpG Islands

are unmethylated. Outside of CpG islands, the adjacent CpG count for a

site is strongly correlated with its methylation state

Fig. 4. Low CpG content promoters are enriched for CpGs with variable

methylation state. We stratified mouse gene promoters into low and high

CpG content groups and then compared the inferred dynamics of CpG

sites in these groups. Low CpG content promoters were significantly less

likely to be in the invariant rate category (P � 0; chi-squared test). This

pattern remained when CpG islands were not considered
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with a high density of assayed CpGs that are between 50 and
758bp long (mean: 95.1 bp). The density of fast (in terms of their

annotated rate category) CpG sites in these regions ranges from

�10 to 100%, with 1766 sites exceeding 50%. Figure 5 shows the

longest of the 215 regions with all constituent CpGs in the fast

rate category. This 129 bp region with 16 assayed CpG sites

overlaps a CpG island, has strong evolutionary sequence conser-

vation across placental mammals, and displays histone modifi-

cations correlated with transcriptional enhancer activity in

various blood-related cell types (ENCODE Project
Consortiumm; Bernstein et al., 2012). These attributes suggest

a gene regulatory role for this locus. This type of simple candi-

date approach based on examination of the extremes of the rate

category distribution may shed light on regions whose methyla-

tion state influences transcriptional regulation during hemato-

poietic differentiation.

4 DISCUSSION

In this article, we adapt phylogenetic Markov models, which are

prevalent in comparative genomics and statistical genetics, to

accurately and efficiently analyze DNA methylation dynamics

across lineage specification. As a proof of concept, we model
RRBS methylation data collected from 13 related stages of

blood cell development (Bock et al., 2012). Using our model,

we illustrate that (i) CpG site methylation status can be accur-

ately reconstructed using data from related cell types at the same

site, (ii) the single CpG site resolution of our methylation dy-

namics estimates enable the discovery of attributes, such as DNA

sequence context, that correlate with CpG methylation dynamics

and (iii) our models facilitate the identification of genomic

regions with highly variable CpG methylation states that are

likely functional.

There are many additional methodologies that could be

mapped from the rich reservoir of statistical genomics to the

application of modeling methylation dynamics. It will be exciting

to see which will prove most useful as genome-wide methylation

data continue to be collected to elucidate tissue differentiation

and development. For instance, our analyses confirm that methy-

lation dynamics are different between CpG sites located in CpG

islands and those elsewhere in the genome. Thus, one way to

extend our current approach would be to use different param-

eterizations based on such ‘external’ annotations, as is commonly

done when modeling coding versus non-coding sequence in com-

parative genomics. Further on, such models could also be inte-

grated in a hidden Markov model (HMM) framework (as in

phylo-HMMs (Siepel and Haussler, 2005)), which could lead to

genome segmentations that account for methylation dynamics.

An HMM framework has already proven useful in modeling the

density of CpG sites across a genome and defining CpG islands

(Hsieh et al., 2009; Wu et al., 2010).
In Section 3.1, we demonstrated that progenitor–descendant

relationships in the lineage tree can be used to accurately recon-

struct the methylation status of CpG sites in different cellular

contexts (average of 90% accuracy). These ‘vertical’ relationships

enabled more accurate reconstruction on the RRBS dataset ana-

lyzed here than using nearest genomic neighbors to predict miss-

ing values. However, we note that there are many methods for

reconstructing missing CpG methylation status using genomic

information. These methods have largely focused on CpGs in

CpG islands, but a recent approach (Zhang et al., 2013) used a

random forest classifier to accurately (91–94%) predict CpG

Fig. 5. A block of highly variable CpG sites has evidence of gene regulatory enhancer activity in several blood cells. This region on Chromosome 4

(mm9.chr4:116 976 784–116 976912) contains 16 CpG sites that our model places in the fast rate category within 129bp. The region is located within a

CpG island in an intron of the gene Rnf220, a ubiquitin ligase. The DNA sequence at this locus is strongly conserved across placental mammals; this

suggests that it is likely functionally important. In addition, functional genomics data collected by the ENCODE project (ENCODE Project

Consortiumm; Bernstein et al., 2012) suggest that this locus is a regulatory enhancer in several blood cell types. It overlaps a DNaseI hypersensitive

site in an erythroid progenitor (G1E), and it has peaks of the H3K4me1 enhancer-associated histone modification in B-cell lymphoma cells (CH12),

erythroblasts, G1E cells and megakaryocytes
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methylation from a methylation array based on a suite of
features including neighboring CpGmethylation status and over-
lapping genomic elements. However, the CpG coverage provided
by methylation arrays and RRBS assays is different (Laird,

2010), so it is difficult to directly compare the results of these
methods on different datasets. Nonetheless, our approach is
complementary to existing methods for reconstructing DNA

methylation that use neighboring CpG sites along the genome.
Context-dependent models that integrate such ‘vertical’ (i.e.
progenitor to descendant) and ‘horizontal’ (i.e. distance on

chromosome) relationships have the potential to further improve
methods for reconstructing unobserved states and highlighting
functionally relevant shifts in methylation.

Most existing methods for analyzing DNA methylation
dynamics are based on pairwise comparisons of cellular con-
texts (Xie et al., 2013; Ziller et al., 2013). For example, Ziller
et al. (2013) identify CpGs with large differences in their esti-

mated methylation between pairs of tissues or cell lines, and
then they cluster these to highlight differentially methylated
regions. This type of pairwise comparison is appropriate for

much of the methylation data currently available, but existing
methods are challenging to generalize to analysis of more den-
sely sampled sets of dependent cell types. To address this, our

approach explicitly models the existence of statistical dependen-
cies between methylation states from multiple related cell types.
Thus, it enables multivariate analyses of methylation patterns
in differentiating cell lineages (like those from Bock et al.,

2012), but it may not provide much improvement when analyz-
ing essentially independent samples (like distantly related ter-
minally differentiated cell types). In addition, our strategy is

subject to the discretization of methylation status in a popula-
tion of cells into discrete methylation states. The three states
and the thresholds we use are supported by the distribution of

methylation values in our data, but including direct modeling
of counts of methylated versus unmethylated instances of a
CpG site (Ziller et al., 2013) into our approach is a promising

future direction.
DNA methylation is just one of several dynamic epigenetic

biochemical modifications regulating precise spatiotemporal
gene expression patterns that are essential for proper develop-

ment. The approach we have demonstrated here provides an
integrative, multivariate framework for modeling any epigenetic
changes across multiple cell types and lineages. As phylogenetic

models proved essential in the identification and interpretation of
functional DNA sequence regions, we believe that lineage tree-
aware Markov models of epigenetic dynamics can play a similar

role in developing a deeper understanding of epigenetic phenom-
ena and their roles in tissue differentiation and vertebrate
development.
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